We propose a new model-free feature screening method based on energy distances for ultrahigh-dimensional binary classification problems. Unlike existing methods, the cut-off involved in our procedure is data adaptive. With a high probability, the proposed method retains only relevant features after discarding all the noise variables. The proposed screening method is also extended to identify pairs of variables that are marginally undetectable, but have differences in their joint distributions. Finally, we build a classifier which maintains coherence between the proposed feature selection criteria and discrimination method, and also establish its risk consistency. An extensive numerical study with simulated data sets and real benchmark data sets show clear and convincing advantages of our classifier over the state-of-the-art methods.
Changing conditions or environments can cause system dynamics to vary over time. To ensure optimal control performance, controllers should adapt to these changes. When the underlying cause and time of change is unknown, we need to rely on online data for this adaptation. In this paper, we will use time-varying Bayesian optimization (TVBO) to tune controllers online in changing environments using appropriate prior knowledge on the control objective and its changes. Two properties are characteristic of many online controller tuning problems: First, they exhibit incremental and lasting changes in the objective due to changes to the system dynamics, e.g., through wear and tear. Second, the optimization problem is convex in the tuning parameters. Current TVBO methods do not explicitly account for these properties, resulting in poor tuning performance and many unstable controllers through over-exploration of the parameter space. We propose a novel TVBO forgetting strategy using Uncertainty-Injection (UI), which incorporates the assumption of incremental and lasting changes. The control objective is modeled as a spatio-temporal Gaussian process (GP) with UI through a Wiener process in the temporal domain. Further, we explicitly model the convexity assumptions in the spatial dimension through GP models with linear inequality constraints. In numerical experiments, we show that our model outperforms the state-of-the-art method in TVBO, exhibiting reduced regret and fewer unstable parameter configurations.
Prototype Generation (PG) methods are typically considered for improving the efficiency of the $k$-Nearest Neighbour ($k$NN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel $k$NN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving -- both in terms of efficiency and classification performance -- the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting a statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.
Deep learning methods have been successfully applied to remote sensing problems for several years. Among these methods, CNN based models have high accuracy in solving the land classification problem using satellite or aerial images. Although these models have high accuracy, this generally comes with large memory size requirements. On the other hand, it is desirable to have small-sized models for applications, such as the ones implemented on unmanned aerial vehicles, with low memory space. Unfortunately, small-sized CNN models do not provide high accuracy as with their large-sized versions. In this study, we propose a novel method to improve the accuracy of CNN models, especially the ones with small size, by injecting traditional features to them. To test the effectiveness of the proposed method, we applied it to the CNN models SqueezeNet, MobileNetV2, ShuffleNetV2, VGG16, and ResNet50V2 having size 0.5 MB to 528 MB. We used the sample mean, gray level co-occurrence matrix features, Hu moments, local binary patterns, histogram of oriented gradients, and color invariants as traditional features for injection. We tested the proposed method on the EuroSAT dataset to perform land classification. Our experimental results show that the proposed method significantly improves the land classification accuracy especially when applied to small-sized CNN models.
Inference of the marginal probability distribution is defined as the calculation of the probability of a subset of the variables and is relevant for handling missing data and hidden variables. While inference of the marginal probability distribution is crucial for various problems in machine learning and statistics, its exact computation is generally not feasible for categorical variables in Bayesian networks due to the NP-hardness of this task. We develop a divide-and-conquer approach using the graphical properties of Bayesian networks to split the computation of the marginal probability distribution into sub-calculations of lower dimensionality, thus reducing the overall computational complexity. Exploiting this property, we present an efficient and scalable algorithm for calculating the marginal probability distribution for categorical variables. The novel method is compared against state-of-the-art approximate inference methods in a benchmarking study, where it displays superior performance. As an immediate application, we demonstrate how our method can be used to classify incomplete data against Bayesian networks and use this approach for identifying the cancer subtype of kidney cancer patient samples.
Node classification on graphs is an important task in many practical domains. It usually requires labels for training, which can be difficult or expensive to obtain in practice. Given a budget for labelling, active learning aims to improve performance by carefully choosing which nodes to label. Previous graph active learning methods learn representations using labelled nodes and select some unlabelled nodes for label acquisition. However, they do not fully utilize the representation power present in unlabelled nodes. We argue that the representation power in unlabelled nodes can be useful for active learning and for further improving performance of active learning for node classification. In this paper, we propose a latent space clustering-based active learning framework for node classification (LSCALE), where we fully utilize the representation power in both labelled and unlabelled nodes. Specifically, to select nodes for labelling, our framework uses the K-Medoids clustering algorithm on a latent space based on a dynamic combination of both unsupervised features and supervised features. In addition, we design an incremental clustering module to avoid redundancy between nodes selected at different steps. Extensive experiments on five datasets show that our proposed framework LSCALE consistently and significantly outperforms the stateof-the-art approaches by a large margin.
The literature on treatment choice focuses on the mean of welfare regret. Ignoring other features of the regret distribution, however, can lead to an undesirable rule that suffers from a high chance of welfare loss due to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of welfare regret. This paradigm shift alters optimal rules drastically. We show that for a wide class of nonlinear criteria, admissible rules are fractional. Focusing on mean square regret, we derive the closed-form probabilities of randomization for finite-sample Bayes and minimax optimal rules when data are normal with known variance. The minimax optimal rule is a simple logit based on the sample mean and agrees with the posterior probability for positive treatment effect under the least favorable prior. The Bayes optimal rule with an uninformative prior is different but produces quantitatively comparable mean square regret. We extend these results to limit experiments and discuss our findings through sample size calculations.
Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs. It shows impressive performance on downstream tasks by zero-shot knowledge transfer. To further enhance CLIP's adaption capability, existing methods proposed to fine-tune additional learnable modules, which significantly improves the few-shot performance but introduces extra training time and computational resources. In this paper, we propose a training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter, which not only inherits the training-free advantage of zero-shot CLIP but also performs comparably to those training-required approaches. Tip-Adapter constructs the adapter via a key-value cache model from the few-shot training set, and updates the prior knowledge encoded in CLIP by feature retrieval. On top of that, the performance of Tip-Adapter can be further boosted to be state-of-the-art on ImageNet by fine-tuning the cache model for 10$\times$ fewer epochs than existing methods, which is both effective and efficient. We conduct extensive experiments of few-shot classification on 11 datasets to demonstrate the superiority of our proposed methods. Code is released at //github.com/gaopengcuhk/Tip-Adapter.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.