Large audio-video language models can generate descriptions for both video and audio. However, they sometimes ignore audio content, producing audio descriptions solely reliant on visual information. This paper refers to this as audio hallucinations and analyzes them in large audio-video language models. We gather 1,000 sentences by inquiring about audio information and annotate them whether they contain hallucinations. If a sentence is hallucinated, we also categorize the type of hallucination. The results reveal that 332 sentences are hallucinated with distinct trends observed in nouns and verbs for each hallucination type. Based on this, we tackle a task of audio hallucination classification using pre-trained audio-text models in the zero-shot and fine-tuning settings. Our experimental results reveal that the zero-shot models achieve higher performance (52.2% in F1) than the random (40.3%) and the fine-tuning models achieve 87.9%, outperforming the zero-shot models.
Large Language Models (LLMs) frequently struggle with complex reasoning tasks, failing to construct logically sound steps towards the solution. In response to this behavior, users often try prompting the LLMs repeatedly in hopes of reaching a better response. This paper studies such repetitive behavior and its effect by defining a novel setting, Chain-of-Feedback (CoF). The setting takes questions that require multi-step reasoning as an input. Upon response, we repetitively prompt meaningless feedback (e.g. 'make another attempt') requesting additional trials. Surprisingly, our preliminary results show that repeated meaningless feedback gradually decreases the quality of the responses, eventually leading to a larger deviation from the intended outcome. To alleviate these troubles, we propose a novel method, Recursive Chain-of-Feedback (R-CoF). Following the logic of recursion in computer science, R-CoF recursively revises the initially incorrect response by breaking down each incorrect reasoning step into smaller individual problems. Our preliminary results show that majority of questions that LLMs fail to respond correctly can be answered using R-CoF without any sample data outlining the logical process.
Contact-rich manipulation tasks often exhibit a large sim-to-real gap. For instance, industrial assembly tasks frequently involve tight insertions where the clearance is less than 0.1 mm and can even be negative when dealing with a deformable receptacle. This narrow clearance leads to complex contact dynamics that are difficult to model accurately in simulation, making it challenging to transfer simulation-learned policies to real-world robots. In this paper, we propose a novel framework for robustly learning manipulation skills for real-world tasks using simulated data only. Our framework consists of two main components: the "Force Planner" and the "Gain Tuner". The Force Planner plans both the robot motion and desired contact force, while the Gain Tuner dynamically adjusts the compliance control gains to track the desired contact force during task execution. The key insight is that by dynamically adjusting the robot's compliance control gains during task execution, we can modulate contact force in the new environment, thereby generating trajectories similar to those trained in simulation and narrowing the sim-to-real gap. Experimental results show that our method, trained in simulation on a generic square peg-and-hole task, can generalize to a variety of real-world insertion tasks involving narrow and negative clearances, all without requiring any fine-tuning. Videos are available at //dynamic-compliance.github.io.
In recent years, large language models have achieved state-of-the-art performance across various NLP tasks. However, investigations have shown that these models tend to rely on shortcut features, leading to inaccurate predictions and causing the models to be unreliable at generalization to out-of-distribution (OOD) samples. For instance, in the context of relation extraction (RE), we would expect a model to identify the same relation independently of the entities involved in it. For example, consider the sentence "Leonardo da Vinci painted the Mona Lisa" expressing the created(Leonardo_da_Vinci, Mona_Lisa) relation. If we substiute "Leonardo da Vinci" with "Barack Obama", then the sentence still expresses the created relation. A robust model is supposed to detect the same relation in both cases. In this work, we describe several semantically-motivated strategies to generate adversarial examples by replacing entity mentions and investigate how state-of-the-art RE models perform under pressure. Our analyses show that the performance of these models significantly deteriorates on the modified datasets (avg. of -48.5% in F1), which indicates that these models rely to a great extent on shortcuts, such as surface forms (or patterns therein) of entities, without making full use of the information present in the sentences.
We revisit the well-known Gilbert-Varshamov (GV) bound for constrained systems. In 1991, Kolesnik and Krachkovsky showed that GV bound can be determined via the solution of some optimization problem. Later, Marcus and Roth (1992) modified the optimization problem and improved the GV bound in many instances. In this work, we provide explicit numerical procedures to solve these two optimization problems and hence, compute the bounds. We then show the procedures can be further simplified when we plot the respective curves. In the case where the graph presentation comprise a single state, we provide explicit formulas for both bounds.
Large language models (LLMs) are now increasingly utilized for role-playing tasks, especially in impersonating domain-specific experts, primarily through role-playing prompts. When interacting in real-world scenarios, the decision-making abilities of a role significantly shape its behavioral patterns. In this paper, we concentrate on evaluating the decision-making abilities of LLMs post role-playing thereby validating the efficacy of role-playing. Our goal is to provide metrics and guidance for enhancing the decision-making abilities of LLMs in role-playing tasks. Specifically, we first use LLMs to generate virtual role descriptions corresponding to the 16 personality types of Myers-Briggs Type Indicator (abbreviated as MBTI) representing a segmentation of the population. Then we design specific quantitative operations to evaluate the decision-making abilities of LLMs post role-playing from four aspects: adaptability, exploration$\&$exploitation trade-off ability, reasoning ability, and safety. Finally, we analyze the association between the performance of decision-making and the corresponding MBTI types through GPT-4. Extensive experiments demonstrate stable differences in the four aspects of decision-making abilities across distinct roles, signifying a robust correlation between decision-making abilities and the roles emulated by LLMs. These results underscore that LLMs can effectively impersonate varied roles while embodying their genuine sociological characteristics.
Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.
Large language models (LLMs) have demonstrated impressive performance on many tasks. However, to achieve optimal performance, specially designed prompting methods are still needed. These methods either rely on task-specific few-shot examples that require a certain level of domain knowledge, or are designed to be simple but only perform well on a few types of tasks. In this work, we attempt to introduce the concept of generalist prompting, which operates on the design principle of achieving optimal or near-optimal performance on a wide range of tasks while eliminating the need for manual selection and customization of prompts tailored to specific problems. Furthermore, we propose MeMo (Mental Models), an innovative prompting method that is simple-designed yet effectively fulfills the criteria of generalist prompting. MeMo distills the cores of various prompting methods into individual mental models and allows LLMs to autonomously select the most suitable mental models for the problem, achieving or being near to the state-of-the-art results on diverse tasks such as STEM, logical reasoning, and commonsense reasoning in zero-shot settings. We hope that the insights presented herein will stimulate further exploration of generalist prompting methods for LLMs.
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing, showing remarkable versatility across various video tasks. However, existing methods often fail to fully leverage their representation capabilities, primarily due to inadequate alignment of intermediate features during target frame decoding. This paper introduces a universal boosting framework for current implicit video representation approaches. Specifically, we utilize a conditional decoder with a temporal-aware affine transform module, which uses the frame index as a prior condition to effectively align intermediate features with target frames. Besides, we introduce a sinusoidal NeRV-like block to generate diverse intermediate features and achieve a more balanced parameter distribution, thereby enhancing the model's capacity. With a high-frequency information-preserving reconstruction loss, our approach successfully boosts multiple baseline INRs in the reconstruction quality and convergence speed for video regression, and exhibits superior inpainting and interpolation results. Further, we integrate a consistent entropy minimization technique and develop video codecs based on these boosted INRs. Experiments on the UVG dataset confirm that our enhanced codecs significantly outperform baseline INRs and offer competitive rate-distortion performance compared to traditional and learning-based codecs.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.