亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Event coreference resolution (ECR) aims to group event mentions referring to the same real-world event into clusters. Most previous studies adopt the "encoding first, then scoring" framework, making the coreference judgment rely on event encoding. Furthermore, current methods struggle to leverage human-summarized ECR rules, e.g., coreferential events should have the same event type, to guide the model. To address these two issues, we propose a prompt-based approach, CorefPrompt, to transform ECR into a cloze-style MLM (masked language model) task. This allows for simultaneous event modeling and coreference discrimination within a single template, with a fully shared context. In addition, we introduce two auxiliary prompt tasks, event-type compatibility and argument compatibility, to explicitly demonstrate the reasoning process of ECR, which helps the model make final predictions. Experimental results show that our method CorefPrompt performs well in a state-of-the-art (SOTA) benchmark.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 回合 · 標注 · 約束 · ·
2023 年 12 月 11 日

Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks(GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into multiple mixed frequency bands according to the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets show that SEC-GFD outperforms other competitive graph-based fraud detectors.

We propose a time series forecasting method named Quantum Gramian Angular Field (QGAF). This approach merges the advantages of quantum computing technology with deep learning, aiming to enhance the precision of time series classification and forecasting. We successfully transformed stock return time series data into two-dimensional images suitable for Convolutional Neural Network (CNN) training by designing specific quantum circuits. Distinct from the classical Gramian Angular Field (GAF) approach, QGAF's uniqueness lies in eliminating the need for data normalization and inverse cosine calculations, simplifying the transformation process from time series data to two-dimensional images. To validate the effectiveness of this method, we conducted experiments on datasets from three major stock markets: the China A-share market, the Hong Kong stock market, and the US stock market. Experimental results revealed that compared to the classical GAF method, the QGAF approach significantly improved time series prediction accuracy, reducing prediction errors by an average of 25% for Mean Absolute Error (MAE) and 48% for Mean Squared Error (MSE). This research confirms the potential and promising prospects of integrating quantum computing with deep learning techniques in financial time series forecasting.

Survival Analysis (SA) constitutes the default method for time-to-event modeling due to its ability to estimate event probabilities of sparsely occurring events over time. In this work, we show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting. The proposed inference method is shown to dynamically handle right-censored observation horizons, and to achieve competitive performance when compared to other state-of-the-art methods in a variety of real-world datasets, including computationally inefficient Deep Learning-based SA methods and models that require MCMC for inference. Nevertheless, our method achieves robust results from the outset, while not being subjected to fine-tuning or hyperparameter optimization.

Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.

The pervasive deployment of surveillance cameras produces a massive volume of data, requiring nuanced interpretation. This study thoroughly examines data representation and visualization techniques tailored for AI surveillance data within current infrastructures. It delves into essential data metrics, methods for situational awareness, and various visualization techniques, highlighting their potential to enhance safety and guide urban development. This study is built upon real-world research conducted in a community college environment, utilizing eight cameras over eight days. This study presents tools like the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps to elucidate pedestrian behaviors, surveillance, and public safety. Given the intricate data from smart video surveillance, such as bounding boxes and segmented images, we aim to convert these computer vision results into intuitive visualizations and actionable insights for stakeholders, including law enforcement, urban planners, and social scientists. The results emphasize the crucial impact of visualizing AI surveillance data on emergency handling, public health protocols, crowd control, resource distribution, predictive modeling, city planning, and informed decision-making.

The emergence of Neural Radiance Fields (NeRF) has promoted the development of synthesized high-fidelity views of the intricate real world. However, it is still a very demanding task to repaint the content in NeRF. In this paper, we propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes. Our work leverages existing diffusion models to guide changes in the designated 3D content. Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects, which can improve the editability, diversity, and application range of NeRF. Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts, including editing appearance, shape, and more. We validate our method on both real-world datasets and synthetic-world datasets for these editing tasks. Please visit //starstesla.github.io/repaintnerf for a better view of our results.

Pre-trained vision-language models have notably accelerated progress of open-world concept recognition. Their impressive zero-shot ability has recently been transferred to multi-label image classification via prompt tuning, enabling to discover novel labels in an open-vocabulary manner. However, this paradigm suffers from non-trivial training costs, and becomes computationally prohibitive for a large number of candidate labels. To address this issue, we note that vision-language pre-training aligns images and texts in a unified embedding space, making it potential for an adapter network to identify labels in visual modality while be trained in text modality. To enhance such cross-modal transfer ability, a simple yet effective method termed random perturbation is proposed, which enables the adapter to search for potential visual embeddings by perturbing text embeddings with noise during training, resulting in better performance in visual modality. Furthermore, we introduce an effective approach to employ large language models for multi-label instruction-following text generation. In this way, a fully automated pipeline for visual label recognition is developed without relying on any manual data. Extensive experiments on public benchmarks show the superiority of our method in various multi-label classification tasks.

We present a signature scheme based on the Syndrome-Decoding problem in rank metric. It is a construction from multi-party computation (MPC), using a MPC protocol which is a slight improvement of the linearized-polynomial protocol used in [Fen22], allowing to obtain a zero-knowledge proof thanks to the MPCitH paradigm. We design two different zero-knowledge proofs exploiting this paradigm: the first, which reaches the lower communication costs, relies on additive secret sharings and uses the hypercube technique [AMGH+22]; and the second relies on low-threshold linear secret sharings as proposed in [FR22]. These proofs of knowledge are transformed into signature schemes thanks to the Fiat-Shamir heuristic [FS86].

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

北京阿比特科技有限公司