In this paper, we comprehensively analyze the vertical and horizontal extensions of existing memory hierarchy. The difference between memory and big memory is well reported. We present the state-of-the-art studies upon the big memory systems, together with design methodology and implementations. Persistence is the first principle of big memory systems. We further show the full-stack and moving persistence.
Plagiarism is a pressing concern, even more so with the availability of large language models. Existing plagiarism detection systems reliably find copied and moderately reworded text but fail for idea plagiarism, especially in mathematical science, which heavily uses formal mathematical notation. We make two contributions. First, we establish a taxonomy of mathematical content reuse by annotating potentially plagiarised 122 scientific document pairs. Second, we analyze the best-performing approaches to detect plagiarism and mathematical content similarity on the newly established taxonomy. We found that the best-performing methods for plagiarism and math content similarity achieve an overall detection score (PlagDet) of 0.06 and 0.16, respectively. The best-performing methods failed to detect most cases from all seven newly established math similarity types. Outlined contributions will benefit research in plagiarism detection systems, recommender systems, question-answering systems, and search engines. We make our experiment's code and annotated dataset available to the community: //github.com/gipplab/Taxonomy-of-Mathematical-Plagiarism
The aim of this paper is to develop hybrid non-orthogonal multiple access (NOMA) assisted downlink transmission. First, for the single-input single-output (SISO) scenario, i.e., each node is equipped with a single antenna, a novel hybrid NOMA scheme is introduced, where NOMA is implemented as an add-on of a legacy time division multiple access (TDMA) network. Because of the simplicity of the SISO scenario, analytical results can be developed to reveal important properties of downlink hybrid NOMA. For example, in the case that the users' channel gains are ordered and the durations of their time slots are the same, downlink hybrid NOMA is shown to always outperform TDMA, which is different from the existing conclusion for uplink hybrid NOMA. Second, the proposed downlink SISO hybrid NOMA scheme is extended to the multiple-input single-output (MISO) scenario, i.e., the base station has multiple antennas. For the MISO scenario, near-field communication is considered to illustrate how NOMA can be used as an add-on in legacy networks based on space division multiple access and TDMA. Simulation results verify the developed analytical results and demonstrate the superior performance of downlink hybrid NOMA compared to conventional orthogonal multiple access.
In this paper, we propose a novel approach for conducting face morphing attacks, which utilizes optimal-landmark-guided image blending. Current face morphing attacks can be categorized into landmark-based and generation-based approaches. Landmark-based methods use geometric transformations to warp facial regions according to averaged landmarks but often produce morphed images with poor visual quality. Generation-based methods, which employ generation models to blend multiple face images, can achieve better visual quality but are often unsuccessful in generating morphed images that can effectively evade state-of-the-art face recognition systems~(FRSs). Our proposed method overcomes the limitations of previous approaches by optimizing the morphing landmarks and using Graph Convolutional Networks (GCNs) to combine landmark and appearance features. We model facial landmarks as nodes in a bipartite graph that is fully connected and utilize GCNs to simulate their spatial and structural relationships. The aim is to capture variations in facial shape and enable accurate manipulation of facial appearance features during the warping process, resulting in morphed facial images that are highly realistic and visually faithful. Experiments on two public datasets prove that our method inherits the advantages of previous landmark-based and generation-based methods and generates morphed images with higher quality, posing a more significant threat to state-of-the-art FRSs.
In this paper, we present a variety of classification experiments related to the task of fictional discourse detection. We utilize a diverse array of datasets, including contemporary professionally published fiction, historical fiction from the Hathi Trust, fanfiction, stories from Reddit, folk tales, GPT-generated stories, and anglophone world literature. Additionally, we introduce a new feature set of word "supersenses" that facilitate the goal of semantic generalization. The detection of fictional discourse can help enrich our knowledge of large cultural heritage archives and assist with the process of understanding the distinctive qualities of fictional storytelling more broadly.
In this paper, we explore the dynamic behavior of threshold networks on undirected signed graphs. Much attention has been dedicated to understand the convergence and long-term behavior of this model. Yet, an open question persists: How does the underlying graph structure impact network dynamics? Similar studies have been carried out for threshold networks and other types of networks, but these primarily focus on unsigned networks. Here, we address the question on signed threshold networks. We introduce the stability index of a graph, related to the concepts of frustration and balance in signed graphs, to establish a connection between the structure and the dynamics of such networks. We show that graphs which present a negative stability index exhibit stable dynamics, i.e., the dynamics converges to fixed points regardless of its threshold parameters. Conversely, if at least one subgraph has a positive stability index, oscillations in long term behavior may appear. Furthermore, we generalize the analysis to network dynamics under periodic update modes and explore the case of the existence of some subgraph with a positive stability index, for which we find that attractors of super-polynomial period in the size of the network may appear.
In this paper, we propose a novel graph neural network-based recommendation model called KGLN, which leverages Knowledge Graph (KG) information to enhance the accuracy and effectiveness of personalized recommendations. We first use a single-layer neural network to merge individual node features in the graph, and then adjust the aggregation weights of neighboring entities by incorporating influence factors. The model evolves from a single layer to multiple layers through iteration, enabling entities to access extensive multi-order associated entity information. The final step involves integrating features of entities and users to produce a recommendation score. The model performance was evaluated by comparing its effects on various aggregation methods and influence factors. In tests over the MovieLen-1M and Book-Crossing datasets, KGLN shows an Area Under the ROC curve (AUC) improvement of 0.3% to 5.9% and 1.1% to 8.2%, respectively, which is better than existing benchmark methods like LibFM, DeepFM, Wide&Deep, and RippleNet.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax