Learned image compression has exhibited promising compression performance, but variable bitrates over a wide range remain a challenge. State-of-the-art variable rate methods compromise the loss of model performance and require numerous additional parameters. In this paper, we present a Quantization-error-aware Variable Rate Framework (QVRF) that utilizes a univariate quantization regulator a to achieve wide-range variable rates within a single model. Specifically, QVRF defines a quantization regulator vector coupled with predefined Lagrange multipliers to control quantization error of all latent representation for discrete variable rates. Additionally, the reparameterization method makes QVRF compatible with a round quantizer. Exhaustive experiments demonstrate that existing fixed-rate VAE-based methods equipped with QVRF can achieve wide-range continuous variable rates within a single model without significant performance degradation. Furthermore, QVRF outperforms contemporary variable-rate methods in rate-distortion performance with minimal additional parameters.
Feature matching is a crucial technique in computer vision. Essentially, it can be considered as a searching problem to establish correspondences between images. The key challenge in this task lies in the lack of a well-defined search space, leading to inaccurate point matching of current methods. In pursuit of a reasonable matching search space, this paper introduces a hierarchical feature matching framework: Area to Point Matching (A2PM), to first find semantic area matches between images, and then perform point matching on area matches, thus setting the search space as the area matches with salient features to achieve high matching precision. This proper search space of A2PM framework also alleviates the accuracy limitation in state-of-the-art Transformer-based matching methods. To realize this framework, we further propose Semantic and Geometry Area Matching (SGAM) method, which utilizes semantic prior and geometry consistency to establish accurate area matches between images. By integrating SGAM with off-the-shelf Transformer-based matchers, our feature matching methods, adopting the A2PM framework, achieve encouraging precision improvements in massive point matching and pose estimation experiments for present arts.
Virtual humans have gained considerable attention in numerous industries, e.g., entertainment and e-commerce. As a core technology, synthesizing photorealistic face frames from target speech and facial identity has been actively studied with generative adversarial networks. Despite remarkable results of modern talking-face generation models, they often entail high computational burdens, which limit their efficient deployment. This study aims to develop a lightweight model for speech-driven talking-face synthesis. We build a compact generator by removing the residual blocks and reducing the channel width from Wav2Lip, a popular talking-face generator. We also present a knowledge distillation scheme to stably yet effectively train the small-capacity generator without adversarial learning. We reduce the number of parameters and MACs by 28$\times$ while retaining the performance of the original model. Moreover, to alleviate a severe performance drop when converting the whole generator to INT8 precision, we adopt a selective quantization method that uses FP16 for the quantization-sensitive layers and INT8 for the other layers. Using this mixed precision, we achieve up to a 19$\times$ speedup on edge GPUs without noticeably compromising the generation quality.
Providing guarantees on the safe operation of robots against edge cases is challenging as testing methods such as traditional Monte-Carlo require too many samples to provide reasonable statistics. Built upon recent advancements in rare-event sampling, we present a model-based method to verify if a robotic system satisfies a Signal Temporal Logic (STL) specification in the face of environment variations and sensor/actuator noises. Our method is efficient and applicable to both linear and nonlinear and even black-box systems with arbitrary, but known, uncertainty distributions. For linear systems with Gaussian uncertainties, we exploit a feature to find optimal parameters that minimize the probability of failure. We demonstrate illustrative examples on applying our approach to real-world autonomous robotic systems.
Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notations, and the convergence estimates that are available are difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge super-linearly, and also compare them numerically. The generating function framework provides further opportunities to explore and analyze existing and new methods.
We study the sharp interface limit of the stochastic Cahn-Hilliard equation with cubic double-well potential and additive space-time white noise $\epsilon^{\sigma}\dot{W}$ where $\epsilon>0$ is an interfacial width parameter. We prove that, for sufficiently large scaling constant $\sigma >0$, the stochastic Cahn-Hilliard equation converges to the deterministic Mullins-Sekerka/Hele-Shaw problem for $\epsilon\rightarrow 0$. The convergence is shown in suitable fractional Sobolev norms as well as in the $L^p$-norm for $p\in (2, 4]$ in spatial dimension $d=2,3$. This generalizes the existing result for the space-time white noise to dimension $d=3$ and improves the existing results for smooth noise, which were so far limited to $p\in \left(2, frac{2d+8}{d+2}\right]$ in spatial dimension $d=2,3$. As a byproduct of the analysis of the stochastic problem with space-time white noise, we identify minimal regularity requirements on the noise which allow convergence to the sharp interface limit in the $\mathbb{H}^1$-norm and also provide improved convergence estimates for the sharp interface limit of the deterministic problem.
The policy represented by the deep neural network can overfit the spurious features in observations, which hamper a reinforcement learning agent from learning effective policy. This issue becomes severe in high-dimensional state, where the agent struggles to learn a useful policy. Data augmentation can provide a performance boost to RL agents by mitigating the effect of overfitting. However, such data augmentation is a form of prior knowledge, and naively applying them in environments might worsen an agent's performance. In this paper, we propose a novel RL algorithm to mitigate the above issue and improve the efficiency of the learned policy. Our approach consists of a max-min game theoretic objective where a perturber network modifies the state to maximize the agent's probability of taking a different action while minimizing the distortion in the state. In contrast, the policy network updates its parameters to minimize the effect of perturbation while maximizing the expected future reward. Based on this objective, we propose a practical deep reinforcement learning algorithm, Adversarial Policy Optimization (APO). Our method is agnostic to the type of policy optimization, and thus data augmentation can be incorporated to harness the benefit. We evaluated our approaches on several DeepMind Control robotic environments with high-dimensional and noisy state settings. Empirical results demonstrate that our method APO consistently outperforms the state-of-the-art on-policy PPO agent. We further compare our method with state-of-the-art data augmentation, RAD, and regularization-based approach DRAC. Our agent APO shows better performance compared to these baselines.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.