亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.

相關內容

We study the interplay between the data distribution and Q-learning-based algorithms with function approximation. We provide a unified theoretical and empirical analysis as to how different properties of the data distribution influence the performance of Q-learning-based algorithms. We connect different lines of research, as well as validate and extend previous results. We start by reviewing theoretical bounds on the performance of approximate dynamic programming algorithms. We then introduce a novel four-state MDP specifically tailored to highlight the impact of the data distribution in the performance of Q-learning-based algorithms with function approximation, both online and offline. Finally, we experimentally assess the impact of the data distribution properties on the performance of two offline Q-learning-based algorithms under different environments. According to our results: (i) high entropy data distributions are well-suited for learning in an offline manner; and (ii) a certain degree of data diversity (data coverage) and data quality (closeness to optimal policy) are jointly desirable for offline learning.

Labeling data is one of the most costly processes in machine learning pipelines. Active learning is a standard approach to alleviating this problem. Pool-based active learning first builds a pool of unlabelled data and iteratively selects data to be labeled so that the total number of required labels is minimized, keeping the model performance high. Many effective criteria for choosing data from the pool have been proposed in the literature. However, how to build the pool is less explored. Specifically, most of the methods assume that a task-specific pool is given for free. In this paper, we advocate that such a task-specific pool is not always available and propose the use of a myriad of unlabelled data on the Web for the pool for which active learning is applied. As the pool is extremely large, it is likely that relevant data exist in the pool for many tasks, and we do not need to explicitly design and build the pool for each task. The challenge is that we cannot compute the acquisition scores of all data exhaustively due to the size of the pool. We propose an efficient method, Seafaring, to retrieve informative data in terms of active learning from the Web using a user-side information retrieval algorithm. In the experiments, we use the online Flickr environment as the pool for active learning. This pool contains more than ten billion images and is several orders of magnitude larger than the existing pools in the literature for active learning. We confirm that our method performs better than existing approaches of using a small unlabelled pool.

In iterative approaches to empirical game-theoretic analysis (EGTA), the strategy space is expanded incrementally based on analysis of intermediate game models. A common approach to strategy exploration, represented by the double oracle algorithm, is to add strategies that best-respond to a current equilibrium. This approach may suffer from overfitting and other limitations, leading the developers of the policy-space response oracle (PSRO) framework for iterative EGTA to generalize the target of best response, employing what they term meta-strategy solvers (MSSs). Noting that many MSSs can be viewed as perturbed or approximated versions of Nash equilibrium, we adopt an explicit regularization perspective to the specification and analysis of MSSs. We propose a novel MSS called regularized replicator dynamics (RRD), which simply truncates the process based on a regret criterion. We show that RRD is more adaptive than existing MSSs and outperforms them in various games. We extend our study to three-player games, for which the payoff matrix is cubic in the number of strategies and so exhaustively evaluating profiles may not be feasible. We propose a profile search method that can identify solutions from incomplete models, and combine this with iterative model construction using a regularized MSS. Finally, and most importantly, we reveal that the regret of best response targets has a tremendous influence on the performance of strategy exploration through experiments, which provides an explanation for the effectiveness of regularization in PSRO.

To generalize across tasks, an agent should acquire knowledge from past tasks that facilitate adaptation and exploration in future tasks. We focus on the problem of in-context adaptation and exploration, where an agent only relies on context, i.e., history of states, actions and/or rewards, rather than gradient-based updates. Posterior sampling (extension of Thompson sampling) is a promising approach, but it requires Bayesian inference and dynamic programming, which often involve unknowns (e.g., a prior) and costly computations. To address these difficulties, we use a transformer to learn an inference process from training tasks and consider a hypothesis space of partial models, represented as small Markov decision processes that are cheap for dynamic programming. In our version of the Symbolic Alchemy benchmark, our method's adaptation speed and exploration-exploitation balance approach those of an exact posterior sampling oracle. We also show that even though partial models exclude relevant information from the environment, they can nevertheless lead to good policies.

Background: Federated learning methods offer the possibility of training machine learning models on privacy-sensitive data sets, which cannot be easily shared. Multiple regulations pose strict requirements on the storage and usage of healthcare data, leading to data being in silos (i.e. locked-in at healthcare facilities). The application of federated algorithms on these datasets could accelerate disease diagnostic, drug development, as well as improve patient care. Methods: We present an extensive evaluation of the impact of different federation and differential privacy techniques when training models on the open-source MIMIC-III dataset. We analyze a set of parameters influencing a federated model performance, namely data distribution (homogeneous and heterogeneous), communication strategies (communication rounds vs. local training epochs), federation strategies (FedAvg vs. FedProx). Furthermore, we assess and compare two differential privacy (DP) techniques during model training: a stochastic gradient descent-based differential privacy algorithm (DP-SGD), and a sparse vector differential privacy technique (DP-SVT). Results: Our experiments show that extreme data distributions across sites (imbalance either in the number of patients or the positive label ratios between sites) lead to a deterioration of model performance when trained using the FedAvg strategy. This issue is resolved when using FedProx with the use of appropriate hyperparameter tuning. Furthermore, the results show that both differential privacy techniques can reach model performances similar to those of models trained without DP, however at the expense of a large quantifiable privacy leakage. Conclusions: We evaluate empirically the benefits of two federation strategies and propose optimal strategies for the choice of parameters when using differential privacy techniques.

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司