亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Factor Analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relation between a sparse representation of the loadings and factor dimension. This relation is done through a summary from information contained in the multivariate posterior. To construct such summary, we introduce a three-step approach. In the first step, the model is fitted with a conservative factor dimension. In the second step, a series of sparse point-estimates, with a decreasing number of factors, is obtained by minimizing an expected predictive loss function. In step three, the degradation in utility in relation to the sparse loadings and factor dimensions is displayed in the posterior summary. The findings are illustrated with applications in classical data from the Factor Analysis literature. We used different prior choices and factor dimensions to demonstrate the flexibility of the proposed method.

相關內容

In many practical applications, such as fraud detection, credit risk modeling or medical decision making, classification models for assigning instances to a predefined set of classes are required to be both precise as well as interpretable. Linear modeling methods such as logistic regression are often adopted, since they offer an acceptable balance between precision and interpretability. Linear methods, however, are not well equipped to handle categorical predictors with high-cardinality or to exploit non-linear relations in the data. As a solution, data preprocessing methods such as weight-of-evidence are typically used for transforming the predictors. The binning procedure that underlies the weight-of-evidence approach, however, has been little researched and typically relies on ad-hoc or expert driven procedures. The objective in this paper, therefore, is to propose a formalized, data-driven and powerful method. To this end, we explore the discretization of continuous variables through the binning of spline functions, which allows for capturing non-linear effects in the predictor variables and yields highly interpretable predictors taking only a small number of discrete values. Moreover, we extend upon the weight-of-evidence approach and propose to estimate the proportions using shrinkage estimators. Together, this offers an improved ability to exploit both non-linear and categorical predictors for achieving increased classification precision, while maintaining interpretability of the resulting model and decreasing the risk of overfitting. We present the results of a series of experiments in a fraud detection setting, which illustrate the effectiveness of the presented approach. We facilitate reproduction of the presented results and adoption of the proposed approaches by providing both the dataset and the code for implementing the experiments and the presented approach.

In this work, we propose a scalable Bayesian procedure for learning the local dependence structure in a high-dimensional model where the variables possess a natural ordering. The ordering of variables can be indexed by time, the vicinities of spatial locations, and so on, with the natural assumption that variables far apart tend to have weak correlations. Applications of such models abound in a variety of fields such as finance, genome associations analysis and spatial modeling. We adopt a flexible framework under which each variable is dependent on its neighbors or predecessors, and the neighborhood size can vary for each variable. It is of great interest to reveal this local dependence structure by estimating the covariance or precision matrix while yielding a consistent estimate of the varying neighborhood size for each variable. The existing literature on banded covariance matrix estimation, which assumes a fixed bandwidth cannot be adapted for this general setup. We employ the modified Cholesky decomposition for the precision matrix and design a flexible prior for this model through appropriate priors on the neighborhood sizes and Cholesky factors. The posterior contraction rates of the Cholesky factor are derived which are nearly or exactly minimax optimal, and our procedure leads to consistent estimates of the neighborhood size for all the variables. Another appealing feature of our procedure is its scalability to models with large numbers of variables due to efficient posterior inference without resorting to MCMC algorithms. Numerical comparisons are carried out with competitive methods, and applications are considered for some real datasets.

In value-based deep reinforcement learning methods, approximation of value functions induces overestimation bias and leads to suboptimal policies. We show that in deep actor-critic methods that aim to overcome the overestimation bias, if the reinforcement signals received by the agent have a high variance, a significant underestimation bias arises. To minimize the underestimation, we introduce a parameter-free, novel deep Q-learning variant. Our Q-value update rule combines the notions behind Clipped Double Q-learning and Maxmin Q-learning by computing the critic objective through the nested combination of maximum and minimum operators to bound the approximate value estimates. We evaluate our modification on the suite of several OpenAI Gym continuous control tasks, improving the state-of-the-art in every environment tested.

The discretisation of boundary integral equations for the scalar Helmholtz equation leads to large dense linear systems. Efficient boundary element methods (BEM), such as the fast multipole method (FMM) and $\Hmat$ based methods, focus on structured low-rank approximations of subblocks in these systems. It is known that the ranks of these subblocks increase linearly with the wavenumber. We explore a data-sparse representation of BEM-matrices valid for a range of frequencies, based on extracting the known phase of the Green's function. Algebraically, this leads to a Hadamard product of a frequency matrix with an $\Hmat$. We show that the frequency dependency of this $\Hmat$ can be determined using a small number of frequency samples, even for geometrically complex three-dimensional scattering obstacles. We describe an efficient construction of the representation by combining adaptive cross approximation with adaptive rational approximation in the continuous frequency dimension. We show that our data-sparse representation allows to efficiently sample the full BEM-matrix at any given frequency, and as such it may be useful as part of an efficient sweeping routine.

In this paper, a peridynamics-based finite element method (Peri-FEM) is proposed for the quasi-static fracture analysis, which is of the consistent computational framework with the classical finite element method (FEM). First, the integral domain of the peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then the spatial discretization is performed based on PEs and CEs, and the linear equations about the nodal displacement are established according to the principle of minimum potential energy. Besides, the cracks are characterized as the degradation of the mechanical properties of PEs. Finally, the validity of the proposed method is demonstrated through numerical examples.

The shape control of deformable linear objects (DLOs) is challenging, since it is difficult to obtain the deformation models. Previous studies often approximate the models in purely offline or online ways. In this paper, we propose a scheme for the shape control of DLOs, where the unknown model is estimated with both offline and online learning. The model is formulated in a local linear format, and approximated by a neural network (NN). First, the NN is trained offline to provide a good initial estimation of the model, which can directly migrate to the online phase. Then, an adaptive controller is proposed to achieve the shape control tasks, in which the NN is further updated online to compensate for any errors in the offline model caused by insufficient training or changes of DLO properties. The simulation and real-world experiments show that the proposed method can precisely and efficiently accomplish the DLO shape control tasks, and adapt well to new and untrained DLOs.

Principal Subspace Analysis (PSA) is one of the most popular approaches for dimensionality reduction in signal processing and machine learning. But centralized PSA solutions are fast becoming irrelevant in the modern era of big data, in which the number of samples and/or the dimensionality of samples often exceed the storage and/or computational capabilities of individual machines. This has led to study of distributed PSA solutions, in which the data are partitioned across multiple machines and an estimate of the principal subspace is obtained through collaboration among the machines. It is in this vein that this paper revisits the problem of distributed PSA under the general framework of an arbitrarily connected network of machines that lacks a central server. The main contributions of the paper in this regard are threefold. First, two algorithms are proposed in the paper that can be used for distributed PSA in the case of data that are partitioned across either samples or (raw) features. Second, in the case of sample-wise partitioned data, the proposed algorithm and a variant of it are analyzed, and their convergence to the true subspace at linear rates is established. Third, extensive experiments on both synthetic and real-world data are carried out to validate the usefulness of the proposed algorithms. In particular, in the case of sample-wise partitioned data, an MPI-based distributed implementation is carried out to study the interplay between network topology and communications cost as well as to study of effect of straggler machines on the proposed algorithms.

In recent years, more attention has been paid prominently to accelerated degradation testing in order to characterize accurate estimation of reliability properties for systems that are designed to work properly for years of even decades. %In this regard, degradation data from particular testing levels of the stress variable(s) are extrapolated with an appropriate statistical model to obtain estimates of lifetime quantiles at normal use levels. In this paper we propose optimal experimental designs for repeated measures accelerated degradation tests with competing failure modes that correspond to multiple response components. The observation time points are assumed to be fixed and known in advance. The marginal degradation paths are expressed using linear mixed effects models. The optimal design is obtained by minimizing the asymptotic variance of the estimator of some quantile of the failure time distribution at the normal use conditions. Numerical examples are introduced to ensure the robustness of the proposed optimal designs and compare their efficiency with standard experimental designs.

The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司