This survey provides an exhaustive review of the applications of extended reality (XR) technologies in the field of remote human-computer interaction (HRI). We developed a systematic search strategy based on the PRISMA methodology. From the initial 2,561 articles selected, 100 research papers that met our inclusion criteria were included. We categorized and summarized the domain in detail, delving into XR technologies, including augmented reality (AR), virtual reality (VR), and mixed reality (MR), and their applications in facilitating intuitive and effective remote control and interaction with robotic systems.The survey highlights existing articles on the application of XR technologies, user experience enhancement, and various interaction designs for XR in remote HRI, providing insights into current trends and future directions. We also identified potential gaps and opportunities for future research to improve remote HRI systems through XR technology to guide and inform future XR and robotics research.
State estimation for legged robots is challenging due to their highly dynamic motion and limitations imposed by sensor accuracy. By integrating Kalman filtering, optimization, and learning-based modalities, we propose a hybrid solution that combines proprioception and exteroceptive information for estimating the state of the robot's trunk. Leveraging joint encoder and IMU measurements, our Kalman filter is enhanced through a single-rigid body model that incorporates ground reaction force control outputs from convex Model Predictive Control optimization. The estimation is further refined through Gated Recurrent Units, which also considers semantic insights and robot height from a Vision Transformer autoencoder applied on depth images. This framework not only furnishes accurate robot state estimates, including uncertainty evaluations, but can minimize the nonlinear errors that arise from sensor measurements and model simplifications through learning. The proposed methodology is evaluated in hardware using a quadruped robot on various terrains, yielding a 65% improvement on the Root Mean Squared Error compared to our VIO SLAM baseline. Code example: //github.com/AlexS28/OptiState
This research explores the application of Large Language Models (LLMs) for automating the extraction of requirement-related legal content in the food safety domain and checking legal compliance of regulatory artifacts. With Industry 4.0 revolutionizing the food industry and with the General Data Protection Regulation (GDPR) reshaping privacy policies and data processing agreements, there is a growing gap between regulatory analysis and recent technological advancements. This study aims to bridge this gap by leveraging LLMs, namely BERT and GPT models, to accurately classify legal provisions and automate compliance checks. Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time and financial constraints.
Objectives: This study aims to provide a comprehensive overview of the role of quadratic polynomials in data modeling and analysis, particularly in representing the curvature of natural phenomena. Methods: We begin with a fundamental explanation of quadratic polynomials and describe their general forms and theoretical significance. We then explored the application of these polynomials in regression analysis, detailing the process of fitting quadratic models to the data using Python libraries NumPy and Matplotlib. The methodology also included calculation of the coefficient of determination (R-squared) to evaluate the polynomial model fit. Results: Using practical examples accompanied by Python scripts, this study demonstrated the application of quadratic polynomials to analyze data patterns. These examples illustrate the utility of quadratic models in applied analytics. Conclusions: This study bridges the gap between theoretical mathematical concepts and practical data analysis, thereby enhancing the understanding and interpretation of the data patterns. Furthermore, its implementation in Python, released under MIT license, offers an accessible tool for public use.
This work initiates the study of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided transmitter architecture for integrated sensing and communication (ISAC) in the millimeter-wave (mmWave) frequency band. Deploying BD-RIS at the transmitter side not only alleviates the need for extensive fully digital radio frequency (RF) chains but also enhances both communication and sensing performance. These benefits are facilitated by the additional design flexibility introduced by the fully-connected scattering matrix of BD-RIS. To achieve the aforementioned benefits, in this work, we propose an efficient two-stage algorithm to design the digital beamforming of the transmitter and the scattering matrix of the BD-RIS with the aim of jointly maximizing the sum rate for multiple communication users and minimizing the largest eigenvalue of the Cramer-Rao bound (CRB) matrix for multiple sensing targets. Numerical results show that the transmitter-side BD-RIS-aided mmWave ISAC outperforms the conventional diagonal-RIS-aided ones in both communication and sensing performance.
Despite the exceptional performance of multi-modal large language models (MLLMs), their deployment requires substantial computational resources. Once malicious users induce high energy consumption and latency time (energy-latency cost), it will exhaust computational resources and harm availability of service. In this paper, we investigate this vulnerability for MLLMs, particularly image-based and video-based ones, and aim to induce high energy-latency cost during inference by crafting an imperceptible perturbation. We find that high energy-latency cost can be manipulated by maximizing the length of generated sequences, which motivates us to propose verbose samples, including verbose images and videos. Concretely, two modality non-specific losses are proposed, including a loss to delay end-of-sequence (EOS) token and an uncertainty loss to increase the uncertainty over each generated token. In addition, improving diversity is important to encourage longer responses by increasing the complexity, which inspires the following modality specific loss. For verbose images, a token diversity loss is proposed to promote diverse hidden states. For verbose videos, a frame feature diversity loss is proposed to increase the feature diversity among frames. To balance these losses, we propose a temporal weight adjustment algorithm. Experiments demonstrate that our verbose samples can largely extend the length of generated sequences.
This study introduces a computational approach leveraging physics-informed neural networks (PINNs) for the efficient computation of arterial blood flows, particularly focusing on solving the incompressible Navier-Stokes equations by using the domain decomposition technique. Unlike conventional computational fluid dynamics methods, PINNs offer advantages by eliminating the need for discretized meshes and enabling the direct solution of partial differential equations (PDEs). In this paper, we propose the weighted Extended Physics-Informed Neural Networks (WXPINNs) and weighted Conservative Physics-Informed Neural Networks (WCPINNs), tailored for detailed hemodynamic simulations based on generalized space-time domain decomposition techniques. The inclusion of multiple neural networks enhances the representation capacity of the weighted PINN methods. Furthermore, the weighted PINNs can be efficiently trained in parallel computing frameworks by employing separate neural networks for each sub-domain. We show that PINNs simulation results circumvent backflow instabilities, underscoring a notable advantage of employing PINNs over traditional numerical methods to solve such complex blood flow models. They naturally address such challenges within their formulations. The presented numerical results demonstrate that the proposed weighted PINNs outperform traditional PINNs settings, where sub-PINNs are applied to each subdomain separately. This study contributes to the integration of deep learning methodologies with fluid mechanics, paving the way for accurate and efficient high-fidelity simulations in biomedical applications, particularly in modeling arterial blood flow.
The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. The technologies of interacting with data particularly have an important entanglement with LLMs as efficient and intuitive data interactions are paramount. In this paper, we present DB-GPT, a revolutionary and product-ready Python library that integrates LLMs into traditional data interaction tasks to enhance user experience and accessibility. DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs, making it an indispensable tool for users ranging from novice to expert. Its system design supports deployment across local, distributed, and cloud environments. Beyond handling basic data interaction tasks like Text-to-SQL with LLMs, it can handle complex tasks like generative data analysis through a Multi-Agents framework and the Agentic Workflow Expression Language (AWEL). The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs. Additionally, DB-GPT offers a series of product-ready features designed to enable users to integrate DB-GPT within their product environments easily. The code of DB-GPT is available at Github(//github.com/eosphoros-ai/DB-GPT) which already has over 10.7k stars. Please install DB-GPT for your own usage with the instructions(//github.com/eosphoros-ai/DB-GPT#install) and watch a 5-minute introduction video on Youtube(//youtu.be/n_8RI1ENyl4) to further investigate DB-GPT.
Neural reflectance models are capable of reproducing the spatially-varying appearance of many real-world materials at different scales. Unfortunately, existing techniques such as NeuMIP have difficulties handling materials with strong shadowing effects or detailed specular highlights. In this paper, we introduce a neural appearance model that offers a new level of accuracy. Central to our model is an inception-based core network structure that captures material appearances at multiple scales using parallel-operating kernels and ensures multi-stage features through specialized convolution layers. Furthermore, we encode the inputs into frequency space, introduce a gradient-based loss, and employ it adaptive to the progress of the learning phase. We demonstrate the effectiveness of our method using a variety of synthetic and real examples.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.