Stochastic Network Calculus is a probabilistic method to compute performance bounds in networks, such as end-to-end delays. It relies on the analysis of stochastic processes using formalism of (Deterministic) Network Calculus. However, unlike the deterministic theory, the computed bounds are usually very loose compared to the simulation. This is mainly due to the intensive use of the Boole's inequality. On the other hand, analyses based on martingales can achieve tight bounds, but until now, they have not been applied to sequences of servers. In this paper, we improve the accuracy of Stochastic Network Calculus by combining this martingale analysis with a recent Stochastic Network Calculus results based on the Pay-Multiplexing-Only-Once property, well-known from the Deterministic Network calculus. We exhibit a non-trivial class of networks that can benefit from this analysis and compare our bounds with simulation.
Large Vision Language Models (LVLMs), despite their recent success, are hardly comprehensively tested for their cognitive abilities. Inspired by the prevalent use of the "Cookie Theft" task in human cognition test, we propose a novel evaluation benchmark to evaluate high-level cognitive ability of LVLMs using images with rich semantics. It defines eight reasoning capabilities and consists of an image description task and a visual question answering task. Our evaluation on well-known LVLMs shows that there is still a large gap in cognitive ability between LVLMs and humans.
Reinforcement learning (RL) has revolutionized decision-making across a wide range of domains over the past few decades. Yet, deploying RL policies in real-world scenarios presents the crucial challenge of ensuring safety. Traditional safe RL approaches have predominantly focused on incorporating predefined safety constraints into the policy learning process. However, this reliance on predefined safety constraints poses limitations in dynamic and unpredictable real-world settings where such constraints may not be available or sufficiently adaptable. Bridging this gap, we propose a novel approach that concurrently learns a safe RL control policy and identifies the unknown safety constraint parameters of a given environment. Initializing with a parametric signal temporal logic (pSTL) safety specification and a small initial labeled dataset, we frame the problem as a bilevel optimization task, intricately integrating constrained policy optimization, using a Lagrangian-variant of the twin delayed deep deterministic policy gradient (TD3) algorithm, with Bayesian optimization for optimizing parameters for the given pSTL safety specification. Through experimentation in comprehensive case studies, we validate the efficacy of this approach across varying forms of environmental constraints, consistently yielding safe RL policies with high returns. Furthermore, our findings indicate successful learning of STL safety constraint parameters, exhibiting a high degree of conformity with true environmental safety constraints. The performance of our model closely mirrors that of an ideal scenario that possesses complete prior knowledge of safety constraints, demonstrating its proficiency in accurately identifying environmental safety constraints and learning safe policies that adhere to those constraints.
We introduce two algorithms for computing tight guarantees on the probabilistic robustness of Bayesian Neural Networks (BNNs). Computing robustness guarantees for BNNs is a significantly more challenging task than verifying the robustness of standard Neural Networks (NNs) because it requires searching the parameters' space for safe weights. Moreover, tight and complete approaches for the verification of standard NNs, such as those based on Mixed-Integer Linear Programming (MILP), cannot be directly used for the verification of BNNs because of the polynomial terms resulting from the consecutive multiplication of variables encoding the weights. Our algorithms efficiently and effectively search the parameters' space for safe weights by using iterative expansion and the network's gradient and can be used with any verification algorithm of choice for BNNs. In addition to proving that our algorithms compute tighter bounds than the SoA, we also evaluate our algorithms against the SoA on standard benchmarks, such as MNIST and CIFAR10, showing that our algorithms compute bounds up to 40% tighter than the SoA.
Human Activity Recognition (HAR) has been extensively studied, with recent emphasis on the implementation of advanced Machine Learning (ML) and Deep Learning (DL) algorithms for accurate classification. This study investigates the efficacy of two ML algorithms, eXtreme Gradient Boosting (XGBoost) and MiniRocket, in the realm of HAR using data collected from smartphone sensors. The experiments are conducted on a dataset obtained from the UCI repository, comprising accelerometer and gyroscope signals captured from 30 volunteers performing various activities while wearing a smartphone. The dataset undergoes preprocessing, including noise filtering and feature extraction, before being utilized for training and testing the classifiers. Monte Carlo cross-validation is employed to evaluate the models' robustness. The findings reveal that both XGBoost and MiniRocket attain accuracy, F1 score, and AUC values as high as 0.99 in activity classification. XGBoost exhibits a slightly superior performance compared to MiniRocket. Notably, both algorithms surpass the performance of other ML and DL algorithms reported in the literature for HAR tasks. Additionally, the study compares the computational efficiency of the two algorithms, revealing XGBoost's advantage in terms of training time. Furthermore, the performance of MiniRocket, which achieves accuracy and F1 values of 0.94, and an AUC value of 0.96 using raw data and utilizing only one channel from the sensors, highlights the potential of directly leveraging unprocessed signals. It also suggests potential advantages that could be gained by utilizing sensor fusion or channel fusion techniques. Overall, this research sheds light on the effectiveness and computational characteristics of XGBoost and MiniRocket in HAR tasks, providing insights for future studies in activity recognition using smartphone sensor data.
A main purpose of spatial data analysis is to predict the objective variable for the unobserved locations. Although Geographically Weighted Regression (GWR) is often used for this purpose, estimation instability proves to be an issue. To address this issue, Bayesian Geographically Weighted Regression (BGWR) has been proposed. In BGWR, by setting the same prior distribution for all locations, the coefficients' estimation stability is improved. However, when observation locations' density is spatially different, these methods do not sufficiently consider the similarity of coefficients among locations. Moreover, the prediction accuracy of these methods becomes worse. To solve these issues, we propose Bayesian Geographically Weighted Sparse Regression (BGWSR) that uses Bayesian Fused Lasso for the prior distribution of the BGWR coefficients. Constraining the parameters to have the same values at adjacent locations is expected to improve the prediction accuracy at locations with a low number of adjacent locations. Furthermore, from the predictive distribution, it is also possible to evaluate the uncertainty of the predicted value of the objective variable. By examining numerical studies, we confirmed that BGWSR has better prediction performance than the existing methods (GWR and BGWR) when the density of observation locations is spatial difference. Finally, the BGWSR is applied to land price data in Tokyo. Thus, the results suggest that BGWSR has better prediction performance and smaller uncertainty than existing methods.
Extracting information efficiently from quantum systems is a major component of quantum information processing tasks. Randomized measurements, or classical shadows, enable predicting many properties of arbitrary quantum states using few measurements. While random single qubit measurements are experimentally friendly and suitable for learning low-weight Pauli observables, they perform poorly for nonlocal observables. Prepending a shallow random quantum circuit before measurements maintains this experimental friendliness, but also has favorable sample complexities for observables beyond low-weight Paulis, including high-weight Paulis and global low-rank properties such as fidelity. However, in realistic scenarios, quantum noise accumulated with each additional layer of the shallow circuit biases the results. To address these challenges, we propose the robust shallow shadows protocol. Our protocol uses Bayesian inference to learn the experimentally relevant noise model and mitigate it in postprocessing. This mitigation introduces a bias-variance trade-off: correcting for noise-induced bias comes at the cost of a larger estimator variance. Despite this increased variance, as we demonstrate on a superconducting quantum processor, our protocol correctly recovers state properties such as expectation values, fidelity, and entanglement entropy, while maintaining a lower sample complexity compared to the random single qubit measurement scheme. We also theoretically analyze the effects of noise on sample complexity and show how the optimal choice of the shallow shadow depth varies with noise strength. This combined theoretical and experimental analysis positions the robust shallow shadow protocol as a scalable, robust, and sample-efficient protocol for characterizing quantum states on current quantum computing platforms.
Marine mammal communication is a complex field, hindered by the diversity of vocalizations and environmental factors. The Watkins Marine Mammal Sound Database (WMMD) is an extensive labeled dataset used in machine learning applications. However, the methods for data preparation, preprocessing, and classification found in the literature are quite disparate. This study first focuses on a brief review of the state-of-the-art benchmarks on the dataset, with an emphasis on clarifying data preparation and preprocessing methods. Subsequently, we propose the application of the Wavelet Scattering Transform (WST) in place of standard methods based on the Short-Time Fourier Transform (STFT). The study also tackles a classification task using an ad-hoc deep architecture with residual layers. We outperform the existing classification architecture by $6\%$ in accuracy using WST and $8\%$ using Mel spectrogram preprocessing, effectively reducing by half the number of misclassified samples, and reaching a top accuracy of $96\%$.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.