亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A well-established research line in structural and algorithmic graph theory is characterizing graph classes by listing their minimal obstructions. When this list is finite for some class $\mathcal C$ we obtain a polynomial-time algorithm for recognizing graphs in $\mathcal C$, and from a logic point of view, having finitely many obstructions corresponds to being definable by a universal sentence. However, in many cases we study classes with infinite sets of minimal obstructions, and this might have neither algorithmic nor logic implications for such a class. Some decades ago, Skrien (1982) and Damaschke (1990) introduced finite expressions of graph classes by means of forbidden orientations and forbidden linear orderings, and recently, similar research lines appeared in the literature, such as expressions by forbidden circular orders, by forbidden tree-layouts, and by forbidden edge-coloured graphs. In this paper, we introduce local expressions of graph classes; a general framework for characterizing graph classes by forbidden equipped graphs. In particular, it encompasses all research lines mentioned above, and we provide some new examples of such characterizations. Moreover, we see that every local expression of a class $\mathcal C$ yields a polynomial-time certification algorithm for graphs in $\mathcal C$. Finally, from a logic point of view, we show that being locally expressible corresponds to being definable in the logic SNP introduced by Feder and Vardi (1999).

相關內容

We study combinatorial inequalities for various classes of set systems: matroids, polymatroids, poset antimatroids, and interval greedoids. We prove log-concavity inequalities for counting certain weighted feasible words, which generalize and extend several previous results establishing Mason conjectures for the numbers of independent sets of matroids. Notably, we prove matching equality conditions for both earlier inequalities and our extensions. In contrast with much of the previous work, our proofs are combinatorial and employ nothing but linear algebra. We use the language formulation of greedoids which allows a linear algebraic setup, which in turn can be analyzed recursively. The underlying non-commutative nature of matrices associated with greedoids allows us to proceed beyond polymatroids and prove the equality conditions. As further application of our tools, we rederive both Stanley's inequality on the number of certain linear extensions, and its equality conditions, which we then also extend to the weighted case.

Incorporating probabilistic terms in mathematical models is crucial for capturing and quantifying uncertainties in real-world systems. Indeed, randomness can have a significant impact on the behavior of the problem's solution, and a deeper analysis is needed to obtain more realistic and informative results. On the other hand, the investigation of stochastic models may require great computational resources due to the importance of generating numerous realizations of the system to have meaningful statistics. This makes the development of complexity reduction techniques, such as surrogate models, essential for enabling efficient and scalable simulations. In this work, we exploit polynomial chaos (PC) expansion to study the accuracy of surrogate representations for a bifurcating phenomena in fluid dynamics, namely the Coanda effect, where the stochastic setting gives a different perspective on the non-uniqueness of the solution. Then, its inclusion in the finite element setting is described, arriving to the formulation of the enhanced Spectral Stochastic Finite Element Method (SSFEM). Moreover, we investigate the connections between the deterministic bifurcation diagram and the PC polynomials, underlying their capability in reconstructing the whole solution manifold.

Marginal structural models have been widely used in causal inference to estimate mean outcomes under either a static or a prespecified set of treatment decision rules. This approach requires imposing a working model for the mean outcome given a sequence of treatments and possibly baseline covariates. In this paper, we introduce a dynamic marginal structural model that can be used to estimate an optimal decision rule within a class of parametric rules. Specifically, we will estimate the mean outcome as a function of the parameters in the class of decision rules, referred to as a regimen-response curve. In general, misspecification of the working model may lead to a biased estimate with questionable causal interpretability. To mitigate this issue, we will leverage risk to assess "goodness-of-fit" of the imposed working model. We consider the counterfactual risk as our target parameter and derive inverse probability weighting and canonical gradients to map it to the observed data. We provide asymptotic properties of the resulting risk estimators, considering both fixed and data-dependent target parameters. We will show that the inverse probability weighting estimator can be efficient and asymptotic linear when the weight functions are estimated using a sieve-based estimator. The proposed method is implemented on the LS1 study to estimate a regimen-response curve for patients with Parkinson's disease.

Principal component analysis (PCA) is a longstanding and well-studied approach for dimension reduction. It rests upon the assumption that the underlying signal in the data has low rank, and thus can be well-summarized using a small number of dimensions. The output of PCA is typically represented using a scree plot, which displays the proportion of variance explained (PVE) by each principal component. While the PVE is extensively reported in routine data analyses, to the best of our knowledge the notion of inference on the PVE remains unexplored. In this paper, we consider inference on the PVE. We first introduce a new population quantity for the PVE with respect to an unknown matrix mean. Critically, our interest lies in the PVE of the sample principal components (as opposed to unobserved population principal components); thus, the population PVE that we introduce is defined conditional on the sample singular vectors. We show that it is possible to conduct inference, in the sense of confidence intervals, p-values, and point estimates, on this population quantity. Furthermore, we can conduct valid inference on the PVE of a subset of the principal components, even when the subset is selected using a data-driven approach such as the elbow rule. We demonstrate the proposed approach in simulation and in an application to a gene expression dataset.

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

Interpolation of data on non-Euclidean spaces is an active research area fostered by its numerous applications. This work considers the Hermite interpolation problem: finding a sufficiently smooth manifold curve that interpolates a collection of data points on a Riemannian manifold while matching a prescribed derivative at each point. We propose a novel procedure relying on the general concept of retractions to solve this problem on a large class of manifolds, including those for which computing the Riemannian exponential or logarithmic maps is not straightforward, such as the manifold of fixed-rank matrices. We analyze the well-posedness of the method by introducing and showing the existence of retraction-convex sets, a generalization of geodesically convex sets. We extend to the manifold setting a classical result on the asymptotic interpolation error of Hermite interpolation. We finally illustrate these results and the effectiveness of the method with numerical experiments on the manifold of fixed-rank matrices and the Stiefel manifold of matrices with orthonormal columns.

The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel method for simulation-based inference in models where the evaluation of the likelihood function is not tractable and only a simulator that can generate synthetic data is available. SSNL fits a dimensionality-reducing surjective normalizing flow model and uses it as a surrogate likelihood function which allows for conventional Bayesian inference using either Markov chain Monte Carlo methods or variational inference. By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets that, for instance, contain non-informative data dimensions or lie along a lower-dimensional manifold. We evaluate SSNL on a wide variety of experiments and show that it generally outperforms contemporary methods used in simulation-based inference, for instance, on a challenging real-world example from astrophysics which models the magnetic field strength of the sun using a solar dynamo model.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

北京阿比特科技有限公司