亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning (RL), which seeks to learn an optimal policy using offline data, has garnered significant interest due to its potential in critical applications where online data collection is infeasible or expensive. This work explores the benefit of federated learning for offline RL, aiming at collaboratively leveraging offline datasets at multiple agents. Focusing on finite-horizon episodic tabular Markov decision processes (MDPs), we design FedLCB-Q, a variant of the popular model-free Q-learning algorithm tailored for federated offline RL. FedLCB-Q updates local Q-functions at agents with novel learning rate schedules and aggregates them at a central server using importance averaging and a carefully designed pessimistic penalty term. Our sample complexity analysis reveals that, with appropriately chosen parameters and synchronization schedules, FedLCB-Q achieves linear speedup in terms of the number of agents without requiring high-quality datasets at individual agents, as long as the local datasets collectively cover the state-action space visited by the optimal policy, highlighting the power of collaboration in the federated setting. In fact, the sample complexity almost matches that of the single-agent counterpart, as if all the data are stored at a central location, up to polynomial factors of the horizon length. Furthermore, FedLCB-Q is communication-efficient, where the number of communication rounds is only linear with respect to the horizon length up to logarithmic factors.

相關內容

While the recommendation system (RS) has advanced significantly through deep learning, current RS approaches usually train and fine-tune models on task-specific datasets, limiting their generalizability to new recommendation tasks and their ability to leverage external knowledge due to model scale and data size constraints. Thus, we designed an LLM-powered autonomous recommender agent, RecMind, which is capable of leveraging external knowledge, utilizing tools with careful planning to provide zero-shot personalized recommendations. We propose a Self-Inspiring algorithm to improve the planning ability. At each intermediate step, the LLM self-inspires to consider all previously explored states to plan for the next step. This mechanism greatly improves the model's ability to comprehend and utilize historical information in planning for recommendation. We evaluate RecMind's performance in various recommendation scenarios. Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation baseline methods in various tasks and achieves comparable performance to a fully trained recommendation model P5.

Trajectory length stands as a crucial hyperparameter within reinforcement learning (RL) algorithms, significantly contributing to the sample inefficiency in robotics applications. Motivated by the pivotal role trajectory length plays in the training process, we introduce Ada-NAV, a novel adaptive trajectory length scheme designed to enhance the training sample efficiency of RL algorithms in robotic navigation tasks. Unlike traditional approaches that treat trajectory length as a fixed hyperparameter, we propose to dynamically adjust it based on the entropy of the underlying navigation policy. Interestingly, Ada-NAV can be applied to both existing on-policy and off-policy RL methods, which we demonstrate by empirically validating its efficacy on three popular RL methods: REINFORCE, Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC). We demonstrate through simulated and real-world robotic experiments that Ada-NAV outperforms conventional methods that employ constant or randomly sampled trajectory lengths. Specifically, for a fixed sample budget, Ada-NAV achieves an 18\% increase in navigation success rate, a 20-38\% reduction in navigation path length, and a 9.32\% decrease in elevation costs. Furthermore, we showcase the versatility of Ada-NAV by integrating it with the Clearpath Husky robot, illustrating its applicability in complex outdoor environments.

Synthetic training data has gained prominence in numerous learning tasks and scenarios, offering advantages such as dataset augmentation, generalization evaluation, and privacy preservation. Despite these benefits, the efficiency of synthetic data generated by current methodologies remains inferior when training advanced deep models exclusively, limiting its practical utility. To address this challenge, we analyze the principles underlying training data synthesis for supervised learning and elucidate a principled theoretical framework from the distribution-matching perspective that explicates the mechanisms governing synthesis efficacy. Through extensive experiments, we demonstrate the effectiveness of our synthetic data across diverse image classification tasks, both as a replacement for and augmentation to real datasets, while also benefits such as out-of-distribution generalization, privacy preservation, and scalability. Specifically, we achieve 70.9% top1 classification accuracy on ImageNet1K when training solely with synthetic data equivalent to 1 X the original real data size, which increases to 76.0% when scaling up to 10 X synthetic data.

Vision-based deep learning perception fulfills a paramount role in robotics, facilitating solutions to many challenging scenarios, such as acrobatic maneuvers of autonomous unmanned aerial vehicles (UAVs) and robot-assisted high-precision surgery. Control-oriented end-to-end perception approaches, which directly output control variables for the robot, commonly take advantage of the robot's state estimation as an auxiliary input. When intermediate outputs are estimated and fed to a lower-level controller, i.e. mediated approaches, the robot's state is commonly used as an input only for egocentric tasks, which estimate physical properties of the robot itself. In this work, we propose to apply a similar approach for the first time -- to the best of our knowledge -- to non-egocentric mediated tasks, where the estimated outputs refer to an external subject. We prove how our general methodology improves the regression performance of deep convolutional neural networks (CNNs) on a broad class of non-egocentric 3D pose estimation problems, with minimal computational cost. By analyzing three highly-different use cases, spanning from grasping with a robotic arm to following a human subject with a pocket-sized UAV, our results consistently improve the R\textsuperscript{2} regression metric, up to +0.51, compared to their stateless baselines. Finally, we validate the in-field performance of a closed-loop autonomous cm-scale UAV on the human pose estimation task. Our results show a significant reduction, i.e., 24\% on average, on the mean absolute error of our stateful CNN, compared to a State-of-the-Art stateless counterpart.

Reinforcement learning (RL) makes an agent learn from trial-and-error experiences gathered during the interaction with the environment. Recently, offline RL has become a popular RL paradigm because it saves the interactions with environments. In offline RL, data providers share large pre-collected datasets, and others can train high-quality agents without interacting with the environments. This paradigm has demonstrated effectiveness in critical tasks like robot control, autonomous driving, etc. However, less attention is paid to investigating the security threats to the offline RL system. This paper focuses on backdoor attacks, where some perturbations are added to the data (observations) such that given normal observations, the agent takes high-rewards actions, and low-reward actions on observations injected with triggers. In this paper, we propose Baffle (Backdoor Attack for Offline Reinforcement Learning), an approach that automatically implants backdoors to RL agents by poisoning the offline RL dataset, and evaluate how different offline RL algorithms react to this attack. Our experiments conducted on four tasks and four offline RL algorithms expose a disquieting fact: none of the existing offline RL algorithms is immune to such a backdoor attack. More specifically, Baffle modifies 10\% of the datasets for four tasks (3 robotic controls and 1 autonomous driving). Agents trained on the poisoned datasets perform well in normal settings. However, when triggers are presented, the agents' performance decreases drastically by 63.2\%, 53.9\%, 64.7\%, and 47.4\% in the four tasks on average. The backdoor still persists after fine-tuning poisoned agents on clean datasets. We further show that the inserted backdoor is also hard to be detected by a popular defensive method. This paper calls attention to developing more effective protection for the open-source offline RL dataset.

Few-shot learning (FSL), purposing to resolve the problem of data-scarce, has attracted considerable attention in recent years. A popular FSL framework contains two phases: (i) the pre-train phase employs the base data to train a CNN-based feature extractor. (ii) the meta-test phase applies the frozen feature extractor to novel data (novel data has different categories from base data) and designs a classifier for recognition. To correct few-shot data distribution, researchers propose Semi-Supervised Few-Shot Learning (SSFSL) by introducing unlabeled data. Although SSFSL has been proved to achieve outstanding performances in the FSL community, there still exists a fundamental problem: the pre-trained feature extractor can not adapt to the novel data flawlessly due to the cross-category setting. Usually, large amounts of noises are introduced to the novel feature. We dub it as Feature-Extractor-Maladaptive (FEM) problem. To tackle FEM, we make two efforts in this paper. First, we propose a novel label prediction method, Isolated Graph Learning (IGL). IGL introduces the Laplacian operator to encode the raw data to graph space, which helps reduce the dependence on features when classifying, and then project graph representation to label space for prediction. The key point is that: IGL can weaken the negative influence of noise from the feature representation perspective, and is also flexible to independently complete training and testing procedures, which is suitable for SSFSL. Second, we propose Graph Co-Training (GCT) to tackle this challenge from a multi-modal fusion perspective by extending the proposed IGL to the co-training framework. GCT is a semi-supervised method that exploits the unlabeled samples with two modal features to crossly strengthen the IGL classifier.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司