亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. In many cases, the gradient of any such loss function has superlinear growth, making the use of the widely-accepted (stochastic) gradient descent methods, which are based on Euler numerical schemes, problematic. We offer a new learning algorithm based on an appropriately constructed variant of the popular stochastic gradient Langevin dynamics (SGLD), which is called tamed unadjusted stochastic Langevin algorithm (TUSLA). We also provide a nonasymptotic analysis of the new algorithm's convergence properties in the context of non-convex learning problems with the use of ANNs. Thus, we provide finite-time guarantees for TUSLA to find approximate minimizers of both empirical and population risks. The roots of the TUSLA algorithm are based on the taming technology for diffusion processes with superlinear coefficients as developed in \citet{tamed-euler, SabanisAoAP} and for MCMC algorithms in \citet{tula}. Numerical experiments are presented which confirm the theoretical findings and illustrate the need for the use of the new algorithm in comparison to vanilla SGLD within the framework of ANNs.

相關內容

In this paper, we study dimension reduction techniques for large-scale controlled stochastic differential equations (SDEs). The drift of the considered SDEs contains a polynomial term satisfying a one-sided growth condition. Such nonlinearities in high dimensional settings occur, e.g., when stochastic reaction diffusion equations are discretized in space. We provide a brief discussion around existence, uniqueness and stability of solutions. (Almost) stability then is the basis for new concepts of Gramians that we introduce and study in this work. With the help of these Gramians, dominant subspace are identified leading to a balancing related highly accurate reduced order SDE. We provide an algebraic error criterion and an error analysis of the propose model reduction schemes. The paper is concluded by applying our method to spatially discretized reaction diffusion equations.

Bayesian neural network inference is often carried out using stochastic gradient sampling methods. For best performance the methods should use a Riemannian metric that improves posterior exploration by accounting for the local curvature, but the existing methods resort to simple diagonal metrics to remain computationally efficient. This loses some of the gains. We propose two non-diagonal metrics that can be used in stochastic samplers to improve convergence and exploration but that have only a minor computational overhead over diagonal metrics. We show that for neural networks with complex posteriors, caused e.g. by use of sparsity-inducing priors, using these metrics provides clear improvements. For some other choices the posterior is sufficiently easy also for the simpler metrics.

Federated learning has attracted increasing attention with the emergence of distributed data. While extensive federated learning algorithms have been proposed for the non-convex distributed problem, federated learning in practice still faces numerous challenges, such as the large training iterations to converge since the sizes of models and datasets keep increasing, and the lack of adaptivity by SGD-based model updates. Meanwhile, the study of adaptive methods in federated learning is scarce and existing works either lack a complete theoretical convergence guarantee or have slow sample complexity. In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on the momentum-based variance-reduced technique in cross-silo FL. We first explore how to design the adaptive algorithm in the FL setting. By providing a counter-example, we prove that a simple combination of FL and adaptive methods could lead to divergence. More importantly, we provide a convergence analysis for our method and prove that our algorithm is the first adaptive FL algorithm to reach the best-known samples $O(\epsilon^{-3})$ and $O(\epsilon^{-2})$ communication rounds to find an $\epsilon$-stationary point without large batches. The experimental results on the language modeling task and image classification task with heterogeneous data demonstrate the efficiency of our algorithms.

This paper introduces a novel algorithm, the Perturbed Proximal Preconditioned SPIDER algorithm (3P-SPIDER), designed to solve finite sum non-convex composite optimization. It is a stochastic Variable Metric Forward-Backward algorithm, which allows approximate preconditioned forward operator and uses a variable metric proximity operator as the backward operator; it also proposes a mini-batch strategy with variance reduction to address the finite sum setting. We show that 3P-SPIDER extends some Stochastic preconditioned Gradient Descent-based algorithms and some Incremental Expectation Maximization algorithms to composite optimization and to the case the forward operator can not be computed in closed form. We also provide an explicit control of convergence in expectation of 3P-SPIDER, and study its complexity in order to satisfy the epsilon-approximate stationary condition. Our results are the first to combine the composite non-convex optimization setting, a variance reduction technique to tackle the finite sum setting by using a minibatch strategy and, to allow deterministic or random approximations of the preconditioned forward operator. Finally, through an application to inference in a logistic regression model with random effects, we numerically compare 3P-SPIDER to other stochastic forward-backward algorithms and discuss the role of some design parameters of 3P-SPIDER.

Keeping risk under control is often more crucial than maximizing expected rewards in real-world decision-making situations, such as finance, robotics, autonomous driving, etc. The most natural choice of risk measures is variance, which penalizes the upside volatility as much as the downside part. Instead, the (downside) semivariance, which captures the negative deviation of a random variable under its mean, is more suitable for risk-averse proposes. This paper aims at optimizing the mean-semivariance (MSV) criterion in reinforcement learning w.r.t. steady reward distribution. Since semivariance is time-inconsistent and does not satisfy the standard Bellman equation, the traditional dynamic programming methods are inapplicable to MSV problems directly. To tackle this challenge, we resort to Perturbation Analysis (PA) theory and establish the performance difference formula for MSV. We reveal that the MSV problem can be solved by iteratively solving a sequence of RL problems with a policy-dependent reward function. Further, we propose two on-policy algorithms based on the policy gradient theory and the trust region method. Finally, we conduct diverse experiments from simple bandit problems to continuous control tasks in MuJoCo, which demonstrate the effectiveness of our proposed methods.

The capacity of neural networks like the widely adopted transformer is known to be very high. Evidence is emerging that they learn successfully due to inductive bias in the training routine, typically a variant of gradient descent (GD). To better understand this bias, we study the tendency for transformer parameters to grow in magnitude ($\ell_2$ norm) during training, and its implications for the emergent representations within self attention layers. Empirically, we document norm growth in the training of transformer language models, including T5 during its pretraining. As the parameters grow in magnitude, we prove that the network approximates a discretized network with saturated activation functions. Such "saturated" networks are known to have a reduced capacity compared to the full network family that can be described in terms of formal languages and automata. Our results suggest saturation is a new characterization of an inductive bias implicit in GD of particular interest for NLP. We leverage the emergent discrete structure in a saturated transformer to analyze the role of different attention heads, finding that some focus locally on a small number of positions, while other heads compute global averages, allowing counting. We believe understanding the interplay between these two capabilities may shed further light on the structure of computation within large transformers.

While preserving the privacy of federated learning (FL), differential privacy (DP) inevitably degrades the utility (i.e., accuracy) of FL due to model perturbations caused by DP noise added to model updates. Existing studies have considered exclusively noise with persistent root-mean-square amplitude and overlooked an opportunity of adjusting the amplitudes to alleviate the adverse effects of the noise. This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of FL and retain the capability of adjusting the learning performance. Specifically, we propose a geometric series form for the noise amplitude and reveal analytically the dependence of the series on the number of global aggregations and the $(\epsilon,\delta)$-DP requirement. We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise. Another important aspect is an upper bound developed for the loss function of a multi-layer perceptron (MLP) trained by FL running the new DP mechanism. Accordingly, the optimal number of global aggregations is obtained, balancing the learning and privacy. Extensive experiments are conducted using MLP, supporting vector machine, and convolutional neural network models on four public datasets. The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.

In this paper, we propose an efficient quantum algorithm for solving nonlinear stochastic differential equations (SDE) via the associated Fokker-Planck equation (FPE). We discretize FPE in space and time using the Chang-Cooper scheme, and compute the solution of the resulting system of linear equations using the quantum linear systems algorithm. The Chang-Cooper scheme is second order accurate and satisfies conservativeness and positivity of the solution. We present detailed error and complexity analyses that demonstrate that our proposed quantum scheme, which we call the Quantum Linear Systems Chang-Cooper Algorithm (QLSCCA), computes the solution to the FPE within prescribed $\epsilon$ error bounds with polynomial dependence on state dimension $d$. Classical numerical methods scale exponentially with dimension, thus, our approach provides an \emph{exponential speed-up} over traditional approaches.

In the paper, we study a class of nonconvex nonconcave minimax optimization problems (i.e., $\min_x\max_y f(x,y)$), where $f(x,y)$ is possible nonconvex in $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition in $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic Nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any global and coordinate-wise adaptive learning rates. Theoretically, we present an effective convergence analysis framework for our methods. Specifically, we prove that our MSGDA and AdaMSGDA methods have the best known sample (gradient) complexity of $O(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution (i.e., $\mathbb{E}\|\nabla F(x)\|\leq \epsilon$, where $F(x)=\max_y f(x,y)$). This manuscript commemorates the mathematician Boris Polyak (1935-2023).

In the context of state-space models, skeleton-based smoothing algorithms rely on a backward sampling step which by default has a $\mathcal O(N^2)$ complexity (where $N$ is the number of particles). Existing improvements in the literature are unsatisfactory: a popular rejection sampling -- based approach, as we shall show, might lead to badly behaved execution time; another rejection sampler with stopping lacks complexity analysis; yet another MCMC-inspired algorithm comes with no stability guarantee. We provide several results that close these gaps. In particular, we prove a novel non-asymptotic stability theorem, thus enabling smoothing with truly linear complexity and adequate theoretical justification. We propose a general framework which unites most skeleton-based smoothing algorithms in the literature and allows to simultaneously prove their convergence and stability, both in online and offline contexts. Furthermore, we derive, as a special case of that framework, a new coupling-based smoothing algorithm applicable to models with intractable transition densities. We elaborate practical recommendations and confirm those with numerical experiments.

北京阿比特科技有限公司