We characterize and demonstrate how the principles of direct manipulation can improve interaction with large language models. This includes: continuous representation of generated objects of interest; reuse of prompt syntax in a toolbar of commands; manipulable outputs to compose or control the effect of prompts; and undo mechanisms. This idea is exemplified in DirectGPT, a user interface layer on top of ChatGPT that works by transforming direct manipulation actions to engineered prompts. A study shows participants were 50% faster and relied on 50% fewer and 72% shorter prompts to edit text, code, and vector images compared to baseline ChatGPT. Our work contributes a validated approach to integrate LLMs into traditional software using direct manipulation.
Developing computational models of neural response is crucial for understanding sensory processing and neural computations. Current state-of-the-art neural network methods use temporal filters to handle temporal dependencies, resulting in an unrealistic and inflexible processing paradigm. Meanwhile, these methods target trial-averaged firing rates and fail to capture important features in spike trains. This work presents the temporal conditioning spiking latent variable models (TeCoS-LVM) to simulate the neural response to natural visual stimuli. We use spiking neurons to produce spike outputs that directly match the recorded trains. This approach helps to avoid losing information embedded in the original spike trains. We exclude the temporal dimension from the model parameter space and introduce a temporal conditioning operation to allow the model to adaptively explore and exploit temporal dependencies in stimuli sequences in a {\it natural paradigm}. We show that TeCoS-LVM models can produce more realistic spike activities and accurately fit spike statistics than powerful alternatives. Additionally, learned TeCoS-LVM models can generalize well to longer time scales. Overall, while remaining computationally tractable, our model effectively captures key features of neural coding systems. It thus provides a useful tool for building accurate predictive computational accounts for various sensory perception circuits.
Large language models (LLMs) like GPT are often conceptualized as passive predictors, simulators, or even stochastic parrots. We instead conceptualize LLMs by drawing on the theory of active inference originating in cognitive science and neuroscience. We examine similarities and differences between traditional active inference systems and LLMs, leading to the conclusion that, currently, LLMs lack a tight feedback loop between acting in the world and perceiving the impacts of their actions, but otherwise fit in the active inference paradigm. We list reasons why this loop may soon be closed, and possible consequences of this including enhanced model self-awareness and the drive to minimize prediction error by changing the world.
The effective assessment of the instruction-following ability of large language models (LLMs) is of paramount importance. A model that cannot adhere to human instructions might be not able to provide reliable and helpful responses. In pursuit of this goal, various benchmarks have been constructed to evaluate the instruction-following capacity of these models. However, these benchmarks are limited to a single language and are constructed using automated approaches, which restricts their applicability and the quality of the test examples they contain. To bridge this gap, we introduce the FollowEval benchmark in this paper. This benchmark is composed of instances in both English and Chinese, and all test examples are crafted by human experts. Furthermore, the FollowEval benchmark is designed to assess LLMs across five critical dimensions of instruction following: string manipulation, commonsense reasoning, logical reasoning, spatial reasoning, and response constraints. To enhance the complexity and present a sufficient challenge, each test example is designed to evaluate more than one dimension. We have evaluated various LLMs using the FollowEval benchmark and found that their performance significantly lags behind that of humans. This highlights the considerable room for improvement in the instruction-following ability of these models.
We present a model of pragmatic language understanding, where utterances are produced and understood by searching for regularized equilibria of signaling games. In this model (which we call ReCo, for Regularized Conventions), speakers and listeners search for contextually appropriate utterance--meaning mappings that are both close to game-theoretically optimal conventions and close to a shared, ''default'' semantics. By characterizing pragmatic communication as equilibrium search, we obtain principled sampling algorithms and formal guarantees about the trade-off between communicative success and naturalness. Across several datasets capturing real and idealized human judgments about pragmatic implicatures, ReCo matches or improves upon predictions made by best response and rational speech act models of language understanding.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.