Existing efforts to improve logical reasoning ability of language models have predominantly relied on supervised fine-tuning, hindering generalization to new domains and/or tasks. The development of Large Langauge Models (LLMs) has demonstrated the capacity of compressing abundant knowledge into a single proxy, enabling them to tackle multiple tasks effectively. Our preliminary experiments, nevertheless, show that LLMs do not show capability on logical reasoning. The performance of LLMs on logical reasoning benchmarks is far behind the existing state-of-the-art baselines. In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training, and activating it via in-context learning, which we termed as LogicLLM. Specifically, we devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion. The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM. Besides, we conduct extensive ablation studies to analyze the key factors in designing logic-oriented proxy tasks.
To answer a question, language models often need to integrate prior knowledge learned during pretraining and new information presented in context. We hypothesize that models perform this integration in a predictable way across different questions and contexts: models will rely more on prior knowledge for questions about entities (e.g., persons, places, etc.) that they are more familiar with due to higher exposure in the training corpus, and be more easily persuaded by some contexts than others. To formalize this problem, we propose two mutual information-based metrics to measure a model's dependency on a context and on its prior about an entity: first, the persuasion score of a given context represents how much a model depends on the context in its decision, and second, the susceptibility score of a given entity represents how much the model can be swayed away from its original answer distribution about an entity. We empirically test our metrics for their validity and reliability. Finally, we explore and find a relationship between the scores and the model's expected familiarity with an entity, and provide two use cases to illustrate their benefits.
In addition to the ability to generate fluent text in various languages, large language models have been successful at tasks that involve basic forms of logical "reasoning" over their context. Recent work found that selectively removing certain components from weight matrices in pre-trained models can improve such reasoning capabilities. We investigate this phenomenon further by carefully studying how certain global associations tend to be stored in specific weight components or Transformer blocks, in particular feed-forward layers. Such associations may hurt predictions in reasoning tasks, and removing the corresponding components may then improve performance. We analyze how this arises during training, both empirically and theoretically, on a two-layer Transformer trained on a basic reasoning task with noise, a toy associative memory model, and on the Pythia family of pre-trained models tested on simple reasoning tasks.
Inference on large language models can be expensive in terms of the compute and memory costs involved, especially when long sequence lengths are used. In particular, the self-attention mechanism used in such models contributes significantly to these costs, which has resulted in several recent works that propose sparse attention approximations for inference. In this work, we propose to approximate the self-attention computation by focusing on the dimensionality of key vectors computed in the attention block. Our analysis reveals that the key vectors lie in a significantly lower-dimensional space, consistently across several datasets and models. Exploiting this observation, we propose Loki, a novel sparse attention method that ranks and selects tokens in the KV-cache based on attention scores computed in low-dimensional space. Our evaluations show that Loki is able to maintain the efficacy of the models better than other popular approximation methods, while speeding up the attention computation due to reduced data movement (load/store) and compute costs.
Recent advances in robot skill learning have unlocked the potential to construct task-agnostic skill libraries, facilitating the seamless sequencing of multiple simple manipulation primitives (aka. skills) to tackle significantly more complex tasks. Nevertheless, determining the optimal sequence for independently learned skills remains an open problem, particularly when the objective is given solely in terms of the final geometric configuration rather than a symbolic goal. To address this challenge, we propose Logic-Skill Programming (LSP), an optimization-based approach that sequences independently learned skills to solve long-horizon tasks. We formulate a first-order extension of a mathematical program to optimize the overall cumulative reward of all skills within a plan, abstracted by the sum of value functions. To solve such programs, we leverage the use of tensor train factorization to construct the value function space, and rely on alternations between symbolic search and skill value optimization to find the appropriate skill skeleton and optimal subgoal sequence. Experimental results indicate that the obtained value functions provide a superior approximation of cumulative rewards compared to state-of-the-art reinforcement learning methods. Furthermore, we validate LSP in three manipulation domains, encompassing both prehensile and non-prehensile primitives. The results demonstrate its capability to identify the optimal solution over the full logic and geometric path. The real-robot experiments showcase the effectiveness of our approach to cope with contact uncertainty and external disturbances in the real world.
Adjusting the latency, power, and accuracy of natural language understanding models is a desirable objective of an efficient architecture. This paper proposes an efficient Transformer architecture that adjusts the inference computational cost adaptively with a desired inference latency speedup. In fine-tuning phase, the proposed method detects less important hidden sequence elements (word-vectors) and eliminates them in each encoder layer using a proposed Attention Context Contribution (ACC) metric. After the fine-tuning phase, with the novel offline-tuning property, the inference latency of the model can be adjusted in a wide range of inference speedup selections without any further training. The proposed method is applied to the BERT_base, GPT-2 and Flan-T5 models for evaluation. Extensive experiments show that most of the word-vectors in higher Transformer layers have less contribution to the subsequent layers; hence, they can be eliminated to improve the inference latency. Experimental results on extensive sentiment analysis, classification, text generation tasks and regression benchmarks like GLUE showed that the method is effective in various datasets with minimal impact on the input's global context. The method was also evaluated under the instruction tuning paradigm, and its performance was measured using different types of prompting. The proposed method mathematically and experimentally improves the inference latency of BERT_base and GPT-2 by up to 4.8 and 3.72 times with less than 0.75% accuracy drop and passable perplexity on average. The suggested approach posits that in Large Language Models (LLMs), although the complete network is necessary for training, it can be truncated during the fine-tuning phase.
Compositional generalization, representing the model's ability to generate text with new attribute combinations obtained by recombining single attributes from the training data, is a crucial property for multi-aspect controllable text generation (MCTG) methods. Nonetheless, a comprehensive compositional generalization evaluation benchmark of MCTG is still lacking. We propose CompMCTG, a benchmark encompassing diverse multi-aspect labeled datasets and a crafted three-dimensional evaluation protocol, to holistically evaluate the compositional generalization of MCTG approaches. We observe that existing MCTG works generally confront a noticeable performance drop in compositional testing. To mitigate this issue, we introduce Meta-MCTG, a training framework incorporating meta-learning, where we enable models to learn how to generalize by simulating compositional generalization scenarios in the training phase. We demonstrate the effectiveness of Meta-MCTG through achieving obvious improvement (by at most 3.64%) for compositional testing performance in 94.4% cases.
Automatic evaluation methods for large language models (LLMs) are hindered by data contamination, leading to inflated assessments of their effectiveness. Existing strategies, which aim to detect contaminated texts, focus on quantifying contamination status instead of accurately gauging model performance. In this paper, we introduce KIEval, a Knowledge-grounded Interactive Evaluation framework, which incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation. Starting with a question in a conventional LLM benchmark involving domain-specific knowledge, KIEval utilizes dynamically generated, multi-round, and knowledge-focused dialogues to determine whether a model's response is merely a recall of benchmark answers or demonstrates a deep comprehension to apply knowledge in more complex conversations. Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization. We also reveal that data contamination brings no contribution or even negative effect to models' real-world applicability and understanding, and existing contamination detection methods for LLMs can only identify contamination in pre-training but not during supervised fine-tuning.
Linear attention mechanisms have gained prominence in causal language models due to their linear computational complexity and enhanced speed. However, the inherent decay mechanism in linear attention presents challenges when applied to multi-dimensional sequence modeling tasks, such as image processing and multi-modal learning. In these scenarios, the utilization of sequential scanning to establish a global receptive field necessitates multiple scans for multi-dimensional data, thereby leading to inefficiencies. This paper identifies the inefficiency caused by a multiplicative linear recurrence and proposes an efficient alternative additive linear recurrence to avoid the issue, as it can handle multi-dimensional data within a single scan. We further develop an efficient multi-dimensional sequential modeling framework called LightNet based on the new recurrence. Moreover, we present two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE to enhance the model's ability to discern positional information in multi-dimensional scenarios. Our empirical evaluations across various tasks, including image classification, image generation, bidirectional language modeling, and autoregressive language modeling, demonstrate the efficacy of LightNet, showcasing its potential as a versatile and efficient solution for multi-dimensional sequential modeling.
Continual learning strives to ensure stability in solving previously seen tasks while demonstrating plasticity in a novel domain. Recent advances in continual learning are mostly confined to a supervised learning setting, especially in NLP domain. In this work, we consider a few-shot continual active learning setting where labeled data are inadequate, and unlabeled data are abundant but with a limited annotation budget. We exploit meta-learning and propose a method, called Meta-Continual Active Learning. This method sequentially queries the most informative examples from a pool of unlabeled data for annotation to enhance task-specific performance and tackle continual learning problems through meta-objective. Specifically, we employ meta-learning and experience replay to address inter-task confusion and catastrophic forgetting. We further incorporate textual augmentations to avoid memory over-fitting caused by experience replay and sample queries, thereby ensuring generalization. We conduct extensive experiments on benchmark text classification datasets from diverse domains to validate the feasibility and effectiveness of meta-continual active learning. We also analyze the impact of different active learning strategies on various meta continual learning models. The experimental results demonstrate that introducing randomness into sample selection is the best default strategy for maintaining generalization in meta-continual learning framework.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.