亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a statistical inference method for an optimal transport map between distributions on real numbers with uniform confidence bands. The concept of optimal transport (OT) is used to measure distances between distributions, and OT maps are used to construct the distance. OT has been applied in many fields in recent years, and its statistical properties have attracted much interest. In particular, since the OT map is a function, a uniform norm-based statistical inference is significant for visualization and interpretation. In this study, we derive a limit distribution of a uniform norm of an estimation error for the OT map, and then develop a uniform confidence band based on it. In addition to our limit theorem, we develop a smoothed bootstrap method with its validation and guarantee on an asymptotic coverage probability of the confidence band. Our proof is based on the functional delta method and the representation of OT maps on the reals.

相關內容

We present a distributed algebra system for efficient and compact implementation of numerical time integration schemes on parallel computers and graphics processing units (GPU). The software implementation combines the time integration library Odeint from Boost with the OpenFPM framework for scalable scientific computing. Implementing multi-stage, multi-step, or adaptive time integration methods in distributed-memory parallel codes or on GPUs is challenging. The present algebra system addresses this by making the time integration methods from Odeint available in a concise template-expression language for numerical simulations distributed and parallelized using OpenFPM. This allows using state-of-the-art time integration schemes, or switching between schemes, by changing one line of code, while maintaining parallel scalability. This enables scalable time integration with compact code and facilitates rapid rewriting and deployment of simulation algorithms. We benchmark the present software for exponential and sigmoidal dynamics and present an application example to the 3D Gray-Scott reaction-diffusion problem on both CPUs and GPUs in only 60 lines of code.

Stable diffusion, a generative model used in text-to-image synthesis, frequently encounters resolution-induced composition problems when generating images of varying sizes. This issue primarily stems from the model being trained on pairs of single-scale images and their corresponding text descriptions. Moreover, direct training on images of unlimited sizes is unfeasible, as it would require an immense number of text-image pairs and entail substantial computational expenses. To overcome these challenges, we propose a two-stage pipeline named Any-Size-Diffusion (ASD), designed to efficiently generate well-composed images of any size, while minimizing the need for high-memory GPU resources. Specifically, the initial stage, dubbed Any Ratio Adaptability Diffusion (ARAD), leverages a selected set of images with a restricted range of ratios to optimize the text-conditional diffusion model, thereby improving its ability to adjust composition to accommodate diverse image sizes. To support the creation of images at any desired size, we further introduce a technique called Fast Seamless Tiled Diffusion (FSTD) at the subsequent stage. This method allows for the rapid enlargement of the ASD output to any high-resolution size, avoiding seaming artifacts or memory overloads. Experimental results on the LAION-COCO and MM-CelebA-HQ benchmarks demonstrate that ASD can produce well-structured images of arbitrary sizes, cutting down the inference time by 2x compared to the traditional tiled algorithm.

A multicell-coordinated beamforming solution for massive multiple-input multiple-output orthogonal frequency-division multiplexing (OFDM) systems is presented when employing low-resolution data converters and per-antenna level constraints. For a more realistic deployment, we aim to find the downlink (DL) beamformer that minimizes the maximum power on transmit antenna array of each basestation under received signal quality constraints while minimizing per-antenna transmit power. We show that strong duality holds between the primal DL formulation and its manageable Lagrangian dual problem which can be interpreted as the virtual uplink (UL) problem with adjustable noise covariance matrices. For a fixed set of noise covariance matrices, we claim that the virtual UL solution is effectively used to compute the DL beamformer and noise covariance matrices can be subsequently updated with an associated subgradient. Our primary contributions are then (1) formulating the quantized DL OFDM antenna power minimax problem and deriving its associated dual problem, (2) showing strong duality and interpreting the dual as a virtual quantized UL OFDM problem, and (3) developing an iterative minimax algorithm based on the dual problem. Simulations validate the proposed algorithm in terms of the maximum antenna transmit power and peak-to-average-power ratio.

Until high-fidelity quantum computers with a large number of qubits become widely available, classical simulation remains a vital tool for algorithm design, tuning, and validation. We present a simulator for the Quantum Approximate Optimization Algorithm (QAOA). Our simulator is designed with the goal of reducing the computational cost of QAOA parameter optimization and supports both CPU and GPU execution. Our central observation is that the computational cost of both simulating the QAOA state and computing the QAOA objective to be optimized can be reduced by precomputing the diagonal Hamiltonian encoding the problem. We reduce the time for a typical QAOA parameter optimization by eleven times for $n = 26$ qubits compared to a state-of-the-art GPU quantum circuit simulator based on cuQuantum. Our simulator is available on GitHub: //github.com/jpmorganchase/QOKit

Systolic Array (SA) architectures are well suited for accelerating matrix multiplications through the use of a pipelined array of Processing Elements (PEs) communicating with local connections and pre-orchestrated data movements. Even though most of the dynamic power consumption in SAs is due to multiplications and additions, pipelined data movement within the SA constitutes an additional important contributor. The goal of this work is to reduce the dynamic power consumption associated with the feeding of data to the SA, by synergistically applying bus-invert coding and zero-value clock gating. By exploiting salient attributes of state-of-the-art CNNs, such as the value distribution of the weights, the proposed SA applies appropriate encoding only to the data that exhibits high switching activity. Similarly, when one of the inputs is zero, unnecessary operations are entirely skipped. This selectively targeted, application-aware encoding approach is demonstrated to reduce the dynamic power consumption of data streaming in CNN applications using Bfloat16 arithmetic by 1%-19%. This translates to an overall dynamic power reduction of 6.2%-9.4%.

The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. The logistic regression allows to use a set of covariates to explain the binary responses. The mixture of logistic regression models is used to fit heterogeneous populations through an unsupervised learning approach. The multicollinearity problem is one of the most common problems in logistics and a mixture of logistic regressions where the covariates are highly correlated. This problem results in unreliable maximum likelihood estimates for the regression coefficients. This research developed shrinkage methods to deal with the multicollinearity in a mixture of logistic regression models. These shrinkage methods include ridge and Liu-type estimators. Through extensive numerical studies, we show that the developed methods provide more reliable results in estimating the coefficients of the mixture. Finally, we applied the shrinkage methods to analyze the bone disorder status of women aged 50 and older.

Memristors provide a tempting solution for weighted synapse connections in neuromorphic computing due to their size and non-volatile nature. However, memristors are unreliable in the commonly used voltage-pulse-based programming approaches and require precisely shaped pulses to avoid programming failure. In this paper, we demonstrate a current-limiting-based solution that provides a more predictable analog memory behavior when reading and writing memristive synapses. With our proposed design READ current can be optimized by about 19x compared to the 1T1R design. Moreover, our proposed design saves about 9x energy compared to the 1T1R design. Our 3T1R design also shows promising write operation which is less affected by the process variation in MOSFETs and the inherent stochastic behavior of memristors. Memristors used for testing are hafnium oxide based and were fabricated in a 65nm hybrid CMOS-memristor process. The proposed design also shows linear characteristics between the voltage applied and the resulting resistance for the writing operation. The simulation and measured data show similar patterns with respect to voltage pulse-based programming and current compliance-based programming. We further observed the impact of this behavior on neuromorphic-specific applications such as a spiking neural network

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司