亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The image-text retrieval task aims to retrieve relevant information from a given image or text. The main challenge is to unify multimodal representation and distinguish fine-grained differences across modalities, thereby finding similar contents and filtering irrelevant contents. However, existing methods mainly focus on unified semantic representation and concept alignment for multi-modalities, while the fine-grained differences across modalities have rarely been studied before, making it difficult to solve the information asymmetry problem. In this paper, we propose a novel asymmetry-sensitive contrastive learning method. By generating corresponding positive and negative samples for different asymmetry types, our method can simultaneously ensure fine-grained semantic differentiation and unified semantic representation between multi-modalities. Additionally, a hierarchical cross-modal fusion method is proposed, which integrates global and local-level features through a multimodal attention mechanism to achieve concept alignment. Extensive experiments performed on MSCOCO and Flickr30K, demonstrate the effectiveness and superiority of our proposed method.

相關內容

Augmented video presentation tools provide a natural way for presenters to interact with their content, resulting in engaging experiences for remote audiences, such as when a presenter uses hand gestures to manipulate and direct attention to visual aids overlaid on their webcam feed. However, authoring and customizing these presentations can be challenging, particularly when presenting dynamic data visualization (i.e., animated charts). To this end, we introduce VisConductor, an authoring and presentation tool that equips presenters with the ability to configure gestures that control affect-varying visualization animation, foreshadow visualization transitions, direct attention to notable data points, and animate the disclosure of annotations. These gestures are integrated into configurable widgets, allowing presenters to trigger content transformations by executing gestures within widget boundaries, with feedback visible only to them. Altogether, our palette of widgets provides a level of flexibility appropriate for improvisational presentations and ad-hoc content transformations, such as when responding to audience engagement. To evaluate VisConductor, we conducted two studies focusing on presenters (N = 11) and audience members (N = 11). Our findings indicate that our approach taken with VisConductor can facilitate interactive and engaging remote presentations with dynamic visual aids. Reflecting on our findings, we also offer insights to inform the future of augmented video presentation tools.

High-fidelity 3D garment synthesis from text is desirable yet challenging for digital avatar creation. Recent diffusion-based approaches via Score Distillation Sampling (SDS) have enabled new possibilities but either intricately couple with human body or struggle to reuse. We introduce ClotheDreamer, a 3D Gaussian-based method for generating wearable, production-ready 3D garment assets from text prompts. We propose a novel representation Disentangled Clothe Gaussian Splatting (DCGS) to enable separate optimization. DCGS represents clothed avatar as one Gaussian model but freezes body Gaussian splats. To enhance quality and completeness, we incorporate bidirectional SDS to supervise clothed avatar and garment RGBD renderings respectively with pose conditions and propose a new pruning strategy for loose clothing. Our approach can also support custom clothing templates as input. Benefiting from our design, the synthetic 3D garment can be easily applied to virtual try-on and support physically accurate animation. Extensive experiments showcase our method's superior and competitive performance. Our project page is at //ggxxii.github.io/clothedreamer.

The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.

Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods

The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes. Most existing methods model the image degradation process using blur kernels. However, this explicit modeling approach struggles to cover the complex and varied degradation processes encountered in the real world, such as high-order combinations of JPEG compression, blur, and noise. Implicit modeling for the degradation process can effectively overcome this issue, but a key challenge of implicit modeling is the lack of accurate ground truth labels for the degradation process to conduct supervised training. To overcome this limitations inherent in implicit modeling, we propose an \textbf{U}ncertainty-based degradation representation for blind \textbf{S}uper-\textbf{R}esolution framework (\textbf{USR}). By suppressing the uncertainty of local degradation representations in images, USR facilitated self-supervised learning of degradation representations. The USR consists of two components: Adaptive Uncertainty-Aware Degradation Extraction (AUDE) and a feature extraction network composed of Variable Depth Dynamic Convolution (VDDC) blocks. To extract Uncertainty-based Degradation Representation from LR images, the AUDE utilizes the Self-supervised Uncertainty Contrast module with Uncertainty Suppression Loss to suppress the inherent model uncertainty of the Degradation Extractor. Furthermore, VDDC block integrates degradation information through dynamic convolution. Rhe VDDC also employs an Adaptive Intensity Scaling operation that adaptively adjusts the degradation representation according to the network hierarchy, thereby facilitating the effective integration of degradation information. Quantitative and qualitative experiments affirm the superiority of our approach.

Generating high-quality answers consistently by providing contextual information embedded in the prompt passed to the Large Language Model (LLM) is dependent on the quality of information retrieval. As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines. This work solves this problem by combining classical text classification with the Large Language Model (LLM) to enable quick information retrieval from the vector store and ensure the relevancy of retrieved information. For the same, this work proposes a new approach Context Augmented retrieval (CAR), where partitioning of vector database by real-time classification of information flowing into the corpus is done. CAR demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.

Pre-training with self-supervised models, such as Hidden-unit BERT (HuBERT) and wav2vec 2.0, has brought significant improvements in automatic speech recognition (ASR). However, these models usually require an expensive computational cost to achieve outstanding performance, slowing down the inference speed. To improve the model efficiency, we introduce an early exit scheme for ASR, namely HuBERT-EE, that allows the model to stop the inference dynamically. In HuBERT-EE, multiple early exit branches are added at the intermediate layers. When the intermediate prediction of the early exit branch is confident, the model stops the inference, and the corresponding result can be returned early. We investigate the proper early exiting criterion and fine-tuning strategy to effectively perform early exiting. Experimental results on the LibriSpeech show that HuBERT-EE can accelerate the inference of the HuBERT while simultaneously balancing the trade-off between the performance and the latency.

Recent years have witnessed significant advancements in light field image super-resolution (LFSR) owing to the progress of modern neural networks. However, these methods often face challenges in capturing long-range dependencies (CNN-based) or encounter quadratic computational complexities (Transformer-based), which limit their performance. Recently, the State Space Model (SSM) with selective scanning mechanism (S6), exemplified by Mamba, has emerged as a superior alternative in various vision tasks compared to traditional CNN- and Transformer-based approaches, benefiting from its effective long-range sequence modeling capability and linear-time complexity. Therefore, integrating S6 into LFSR becomes compelling, especially considering the vast data volume of 4D light fields. However, the primary challenge lies in \emph{designing an appropriate scanning method for 4D light fields that effectively models light field features}. To tackle this, we employ SSMs on the informative 2D slices of 4D LFs to fully explore spatial contextual information, complementary angular information, and structure information. To achieve this, we carefully devise a basic SSM block characterized by an efficient SS2D mechanism that facilitates more effective and efficient feature learning on these 2D slices. Based on the above two designs, we further introduce an SSM-based network for LFSR termed LFMamba. Experimental results on LF benchmarks demonstrate the superior performance of LFMamba. Furthermore, extensive ablation studies are conducted to validate the efficacy and generalization ability of our proposed method. We expect that our LFMamba shed light on effective representation learning of LFs with state space models.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

北京阿比特科技有限公司