亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.

相關內容

We consider a general class of regression models with normally distributed covariates, and the associated nonconvex problem of fitting these models from data. We develop a general recipe for analyzing the convergence of iterative algorithms for this task from a random initialization. In particular, provided each iteration can be written as the solution to a convex optimization problem satisfying some natural conditions, we leverage Gaussian comparison theorems to derive a deterministic sequence that provides sharp upper and lower bounds on the error of the algorithm with sample-splitting. Crucially, this deterministic sequence accurately captures both the convergence rate of the algorithm and the eventual error floor in the finite-sample regime, and is distinct from the commonly used "population" sequence that results from taking the infinite-sample limit. We apply our general framework to derive several concrete consequences for parameter estimation in popular statistical models including phase retrieval and mixtures of regressions. Provided the sample size scales near-linearly in the dimension, we show sharp global convergence rates for both higher-order algorithms based on alternating updates and first-order algorithms based on subgradient descent. These corollaries, in turn, yield multiple consequences, including: (a) Proof that higher-order algorithms can converge significantly faster than their first-order counterparts (and sometimes super-linearly), even if the two share the same population update and (b) Intricacies in super-linear convergence behavior for higher-order algorithms, which can be nonstandard (e.g., with exponent 3/2) and sensitive to the noise level in the problem. We complement these results with extensive numerical experiments, which show excellent agreement with our theoretical predictions.

In this paper, we propose two novel inertial-like algorithms for solving the split common null point problem (SCNPP) with respect to set-valued maximal operators. The features of the presented algorithm are using new inertial structure (i.e, the design of the new inertial-like method does neither involve computation of the norm of the difference between $x_n$ and $x_{n-1}$ in advance, nor need to consider the special value of the inertial parameter $\theta_n$ to make the condition $\sum_{n=1}^\infty \alpha_n\|x_n-x_{n-1}\|^2<\infty$ valid) and the selection of the step-sizes does not need prior knowledge of operator norms. Numerical experiments are presented to illustrate the performance of the algorithms.

Currently the amount of data produced worldwide is increasing beyond measure, thus a high volume of unsupervised data must be processed continuously. One of the main unsupervised data analysis is clustering. In streaming data scenarios, the data is composed by an increasing sequence of batches of samples where the concept drift phenomenon may happen. In this paper, we formally define the Streaming $K$-means(S$K$M) problem, which implies a restart of the error function when a concept drift occurs. We propose a surrogate error function that does not rely on concept drift detection. We proof that the surrogate is a good approximation of the S$K$M error. Hence, we suggest an algorithm which minimizes this alternative error each time a new batch arrives. We present some initialization techniques for streaming data scenarios as well. Besides providing theoretical results, experiments demonstrate an improvement of the converged error for the non-trivial initialization methods.

We propose a computationally-friendly adaptive learning rate schedule, "AdaLoss", which directly uses the information of the loss function to adjust the stepsize in gradient descent methods. We prove that this schedule enjoys linear convergence in linear regression. Moreover, we provide a linear convergence guarantee over the non-convex regime, in the context of two-layer over-parameterized neural networks. If the width of the first-hidden layer in the two-layer networks is sufficiently large (polynomially), then AdaLoss converges robustly \emph{to the global minimum} in polynomial time. We numerically verify the theoretical results and extend the scope of the numerical experiments by considering applications in LSTM models for text clarification and policy gradients for control problems.

Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize well to unseen data. Recently, researchers explained it by investigating the implicit regularization effect of optimization algorithms. A remarkable progress is the work (Lyu&Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. However, theoretical guarantee for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit regularization of adaptive optimization algorithms when they are optimizing the logistic loss on homogeneous deep neural networks. We prove that adaptive algorithms that adopt exponential moving average strategy in conditioner (such as Adam and RMSProp) can maximize the margin of the neural network, while AdaGrad that directly sums historical squared gradients in conditioner can not. It indicates superiority on generalization of exponential moving average strategy in the design of the conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel adaptive gradient flow and surrogate margin. Our experiments can well support the theoretical findings on convergent direction of adaptive optimization algorithms.

Existing domain adaptation focuses on transferring knowledge between domains with categorical indices (e.g., between datasets A and B). However, many tasks involve continuously indexed domains. For example, in medical applications, one often needs to transfer disease analysis and prediction across patients of different ages, where age acts as a continuous domain index. Such tasks are challenging for prior domain adaptation methods since they ignore the underlying relation among domains. In this paper, we propose the first method for continuously indexed domain adaptation. Our approach combines traditional adversarial adaptation with a novel discriminator that models the encoding-conditioned domain index distribution. Our theoretical analysis demonstrates the value of leveraging the domain index to generate invariant features across a continuous range of domains. Our empirical results show that our approach outperforms the state-of-the-art domain adaption methods on both synthetic and real-world medical datasets.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.

北京阿比特科技有限公司