Given a collection of vectors $x^{(1)},\dots,x^{(n)} \in \{0,1\}^d$, the selection problem asks to report the index of an "approximately largest" entry in $x=\sum_{j=1}^n x^{(j)}$. Selection abstracts a host of problems--in machine learning it can be used for hyperparameter tuning, feature selection, or to model empirical risk minimization. We study selection under differential privacy, where a released index guarantees privacy for each vectors. Though selection can be solved with an excellent utility guarantee in the central model of differential privacy, the distributed setting lacks solutions. Specifically, strong privacy guarantees with high utility are offered in high trust settings, but not in low trust settings. For example, in the popular shuffle model of distributed differential privacy, there are strong lower bounds suggesting that the utility of the central model cannot be obtained. In this paper we design a protocol for differentially private selection in a trust setting similar to the shuffle model--with the crucial difference that our protocol tolerates corrupted servers while maintaining privacy. Our protocol uses techniques from secure multi-party computation (MPC) to implement a protocol that: (i) has utility on par with the best mechanisms in the central model, (ii) scales to large, distributed collections of high-dimensional vectors, and (iii) uses $k\geq 3$ servers that collaborate to compute the result, where the differential privacy holds assuming an honest majority. Since general-purpose MPC techniques are not sufficiently scalable, we propose a novel application of integer secret sharing, and evaluate the utility and efficiency of our protocol theoretically and empirically. Our protocol is the first to demonstrate that large-scale differentially private selection is possible in a distributed setting.
Trustworthy federated learning aims to achieve optimal performance while ensuring clients' privacy. Existing privacy-preserving federated learning approaches are mostly tailored for image data, lacking applications for time series data, which have many important applications, like machine health monitoring, human activity recognition, etc. Furthermore, protective noising on a time series data analytics model can significantly interfere with temporal-dependent learning, leading to a greater decline in accuracy. To address these issues, we develop a privacy-preserving federated learning algorithm for time series data. Specifically, we employ local differential privacy to extend the privacy protection trust boundary to the clients. We also incorporate shuffle techniques to achieve a privacy amplification, mitigating the accuracy decline caused by leveraging local differential privacy. Extensive experiments were conducted on five time series datasets. The evaluation results reveal that our algorithm experienced minimal accuracy loss compared to non-private federated learning in both small and large client scenarios. Under the same level of privacy protection, our algorithm demonstrated improved accuracy compared to the centralized differentially private federated learning in both scenarios.
A key challenge in many modern data analysis tasks is that user data are heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that allows user data to differ in both distribution and quantity of data, and provide a method for estimating the population-level mean while preserving user-level differential privacy. We demonstrate asymptotic optimality of our estimator and also prove general lower bounds on the error achievable in the setting we introduce.
Synthesis of distributed protocols is a hard, often undecidable, problem. Completion techniques provide partial remedy by turning the problem into a search problem. However, the space of candidate completions is still massive. In this paper, we propose optimization techniques to reduce the size of the search space by a factorial factor by exploiting symmetries (isomorphisms) in functionally equivalent solutions. We present both a theoretical analysis of this optimization as well as empirical results that demonstrate its effectiveness in synthesizing both the Alternating Bit Protocol and Two Phase Commit. Our experiments show that the optimized tool achieves a speedup of approximately 2 to 10 times compared to its unoptimized counterpart.
The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption model, in which at most a fraction $f_n$ of parties can be corrupted by the adversary. However, due to the infamous Sybil attack, nominal models are not sufficient to express the trust assumptions in open (i.e., permissionless) settings. Instead, permissionless systems typically operate in a weighted model, where each participant is associated with a weight and the adversary can corrupt a set of parties holding at most a fraction $f_w$ of total weight. In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal model into the weighted model. To this end, we formalize and solve three novel optimization problems, which we collectively call the weight reduction problems, that allow us to map large real weights into small integer weights while preserving the properties necessary for the correctness of the protocols. In all cases, we manage to keep the sum of the integer weights to be at most linear in the number of parties, resulting in extremely efficient protocols for the weighted model. Moreover, we demonstrate that, on weight distributions that emerge in practice, the sum of the integer weights tends to be far from the theoretical worst-case and, often even smaller than the number of participants. While, for some protocols, our transformation requires an arbitrarily small reduction in resilience (i.e., $f_w = f_n - \epsilon$), surprisingly, for many important problems we manage to obtain weighted solutions with the same resilience ($f_w = f_n$) as nominal ones. Notable examples include asynchronous consensus, verifiable secret sharing, erasure-coded distributed storage and broadcast protocols.
In this paper we propose a number of KEM-based protocols to establish a shared secret between two parties, and study their resistance over unauthenticated channels. This means analyzing the security of the protocol itself, and its robustness against Man-inthe- Middle attacks. We compare them with their KEX-based counterparts to highlight the differences that arise naturally, due to the nature of KEM constructions, in terms of the protocol itself and the types of attacks that they are subject to. We provide practical go-to KEM-based protocols instances to migrate to, based on the conditions of currently-in-use KEX-based protocols.
We revisit the problem of designing scalable protocols for private statistics and private federated learning when each device holds its private data. Our first contribution is to propose a simple primitive that allows for efficient implementation of several commonly used algorithms, and allows for privacy accounting that is close to that in the central setting without requiring the strong trust assumptions it entails. Second, we propose a system architecture that implements this primitive and perform a security analysis of the proposed system.
Decentralized identity mechanisms endeavor to endow users with complete sovereignty over their digital assets within the Web3 ecosystem. Unfortunately, this benefit frequently comes at the expense of users' credential and identity privacy. Additionally, existing schemes fail to resist Sybil attacks that have long plagued Web3, and lack reasonable key recovery mechanisms to regain control of digital assets after loss. In this work, we propose LinkDID, a privacy-preserving, Sybil-resistant, and key-recoverable decentralized identity scheme that supports selective disclosure of credentials for arbitrary predicates while maintaining privacy for credentials and identities. Through an identifier association mechanism, LinkDID can privately and forcibly aggregate users' identifiers, providing Sybil resistance without relying on any external data or collateral from benign users. To enable key recovery, LinkDID permits users to establish proofs of ownership for identifiers with lost keys and request an update of corresponding keys from the decentralized ledger. We provide a detailed theoretical analysis and security proofs of LinkDID, along with an exhaustive performance evaluation that shows its ability to complete interactions in less than 10 seconds on consumer-grade devices.
Secure aggregation is a critical component in federated learning (FL), which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privacy of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of FL. In fact, we show that the conventional random user selection strategies in FL lead to leaking users' individual models within number of rounds that is linear in the number of users. To address this challenge, we introduce a secure aggregation framework, Multi-RoundSecAgg, with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of FL over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. Our experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings demonstrate the performance improvement over the baselines, both in terms of privacy protection and test accuracy.
While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the LeadingOnes and Jump benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size $m$. A short empirical analysis confirms these findings, but also reveals that small implementation details like the rate of void mutations can make an important difference.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.