Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure.
Recent works attribute the capability of in-context learning (ICL) in large pre-trained language models to implicitly simulating and fine-tuning an internal model (e.g., linear or 2-layer MLP) during inference. However, such constructions require large memory overhead, which makes simulation of more sophisticated internal models intractable. In this work, we propose an efficient construction, Transformer in Transformer (in short, TinT), that allows a transformer to simulate and fine-tune complex models internally during inference (e.g., pre-trained language models). In particular, we introduce innovative approximation techniques that allow a TinT model with less than 2 billion parameters to simulate and fine-tune a 125 million parameter transformer model within a single forward pass. TinT accommodates many common transformer variants and its design ideas also improve the efficiency of past instantiations of simple models inside transformers. We conduct end-to-end experiments to validate the internal fine-tuning procedure of TinT on various language modeling and downstream tasks. For example, even with a limited one-step budget, we observe TinT for a OPT-125M model improves performance by 4-16% absolute on average compared to OPT-125M. These findings suggest that large pre-trained language models are capable of performing intricate subroutines. To facilitate further work, a modular and extensible codebase for TinT is included.
This paper introduces SparseOptimizer, a novel deep learning optimizer that exploits Moreau-Yosida regularization to naturally induce sparsity in large language models such as BERT, ALBERT and GPT. Key to the design of SparseOptimizer is an embedded shrinkage operator, which imparts sparsity directly within the optimization process. This operator, backed by a sound theoretical framework, includes an analytical solution, thereby reinforcing the optimizer's robustness and efficacy. Crucially, SparseOptimizer's plug-and-play functionality eradicates the need for code modifications, making it a universally adaptable tool for a wide array of large language models. Empirical evaluations on benchmark datasets such as GLUE, RACE, SQuAD1, and SQuAD2 confirm that SparseBERT and SparseALBERT, when sparsified using SparseOptimizer, achieve performance comparable to their dense counterparts, BERT and ALBERT, while significantly reducing their parameter count. Further, this work proposes an innovative optimizer-compiler co-design strategy, demonstrating the potential of inference acceleration (\textbf{3.37x}, \textbf{6.30x}, and \textbf{7.15x} in comparison with Pytorch, TensorFlow, and LLVM generic compile, respectively) in SparseBERT when paired with an appropriately designed compiler. This study represents a significant step forward in the evolution of efficient, scalable, and high-performing large language models, setting a precedent for future exploration and optimization in this domain. The SparseOptimizer code and SparseALBERT model will be publicly available upon paper acceptance.
Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.
The training of graph neural networks (GNNs) is extremely time consuming because sparse graph-based operations are hard to be accelerated by hardware. Prior art explores trading off the computational precision to reduce the time complexity via sampling-based approximation. Based on the idea, previous works successfully accelerate the dense matrix based operations (e.g., convolution and linear) with negligible accuracy drop. However, unlike dense matrices, sparse matrices are stored in the irregular data format such that each row/column may have different number of non-zero entries. Thus, compared to the dense counterpart, approximating sparse operations has two unique challenges (1) we cannot directly control the efficiency of approximated sparse operation since the computation is only executed on non-zero entries; (2) sub-sampling sparse matrices is much more inefficient due to the irregular data format. To address the issues, our key idea is to control the accuracy-efficiency trade off by optimizing computation resource allocation layer-wisely and epoch-wisely. Specifically, for the first challenge, we customize the computation resource to different sparse operations, while limit the total used resource below a certain budget. For the second challenge, we cache previous sampled sparse matrices to reduce the epoch-wise sampling overhead. Finally, we propose a switching mechanisms to improve the generalization of GNNs trained with approximated operations. To this end, we propose Randomized Sparse Computation, which for the first time demonstrate the potential of training GNNs with approximated operations. In practice, rsc can achieve up to $11.6\times$ speedup for a single sparse operation and a $1.6\times$ end-to-end wall-clock time speedup with negligible accuracy drop.
In this paper, we provide the observation that too few queries assigned as positive samples in DETR with one-to-one set matching leads to sparse supervisions on the encoder's output which considerably hurt the discriminative feature learning of the encoder and vice visa for attention learning in the decoder. To alleviate this, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners. This new training scheme can easily enhance the encoder's learning ability in end-to-end detectors by training the multiple parallel auxiliary heads supervised by one-to-many label assignments such as ATSS and Faster RCNN. In addition, we conduct extra customized positive queries by extracting the positive coordinates from these auxiliary heads to improve the training efficiency of positive samples in the decoder. In inference, these auxiliary heads are discarded and thus our method introduces no additional parameters and computational cost to the original detector while requiring no hand-crafted non-maximum suppression (NMS). We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and DINO-Deformable-DETR. Specifically, we improve the basic Deformable-DETR by 5.8% AP in 12-epoch training and 3.2% AP in 36-epoch training. The state-of-the-art DINO-Deformable-DETR with Swin-L can still be improved from 58.5% to 59.5% AP on COCO val. Surprisingly, incorporated with ViT-L backbone, we achieve 65.6% AP on COCO test-dev, outperforming previous methods with much fewer model sizes. Codes will be available at //github.com/Sense-X/Co-DETR.
Discovering the intended items of user queries from a massive repository of items is one of the main goals of an e-commerce search system. Relevance prediction is essential to the search system since it helps improve performance. When online serving a relevance model, the model is required to perform fast and accurate inference. Currently, the widely used models such as Bi-encoder and Cross-encoder have their limitations in accuracy or inference speed respectively. In this work, we propose a novel model called the Entity-Based Relevance Model (EBRM). We identify the entities contained in an item and decompose the QI (query-item) relevance problem into multiple QE (query-entity) relevance problems; we then aggregate their results to form the QI prediction using a soft logic formulation. The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy as well as cache QE predictions for fast online inference. Utilizing soft logic makes the prediction procedure interpretable and intervenable. We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance. The proposed method is evaluated on labeled data from e-commerce websites. Empirical results show that it achieves promising improvements with computation efficiency.
Automatic query reformulation is a widely utilized technology for enriching user requirements and enhancing the outcomes of code search. It can be conceptualized as a machine translation task, wherein the objective is to rephrase a given query into a more comprehensive alternative. While showing promising results, training such a model typically requires a large parallel corpus of query pairs (i.e., the original query and a reformulated query) that are confidential and unpublished by online code search engines. This restricts its practicality in software development processes. In this paper, we propose SSQR, a self-supervised query reformulation method that does not rely on any parallel query corpus. Inspired by pre-trained models, SSQR treats query reformulation as a masked language modeling task conducted on an extensive unannotated corpus of queries. SSQR extends T5 (a sequence-to-sequence model based on Transformer) with a new pre-training objective named corrupted query completion (CQC), which randomly masks words within a complete query and trains T5 to predict the masked content. Subsequently, for a given query to be reformulated, SSQR identifies potential locations for expansion and leverages the pre-trained T5 model to generate appropriate content to fill these gaps. The selection of expansions is then based on the information gain associated with each candidate. Evaluation results demonstrate that SSQR outperforms unsupervised baselines significantly and achieves competitive performance compared to supervised methods.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.