Models for fine-grained image classification tasks, where the difference between some classes can be extremely subtle and the number of samples per class tends to be low, are particularly prone to picking up background-related biases and demand robust methods to handle potential examples with out-of-distribution (OOD) backgrounds. To gain deeper insights into this critical problem, our research investigates the impact of background-induced bias on fine-grained image classification, evaluating standard backbone models such as Convolutional Neural Network (CNN) and Vision Transformers (ViT). We explore two masking strategies to mitigate background-induced bias: Early masking, which removes background information at the (input) image level, and late masking, which selectively masks high-level spatial features corresponding to the background. Extensive experiments assess the behavior of CNN and ViT models under different masking strategies, with a focus on their generalization to OOD backgrounds. The obtained findings demonstrate that both proposed strategies enhance OOD performance compared to the baseline models, with early masking consistently exhibiting the best OOD performance. Notably, a ViT variant employing GAP-Pooled Patch token-based classification combined with early masking achieves the highest OOD robustness.
Inspired by recent findings that generative diffusion models learn semantically meaningful representations, we use them to discover the intrinsic hierarchical structure in biomedical 3D images using unsupervised segmentation. We show that features of diffusion models from different stages of a U-Net-based ladder-like architecture capture different hierarchy levels in 3D biomedical images. We design three losses to train a predictive unsupervised segmentation network that encourages the decomposition of 3D volumes into meaningful nested subvolumes that represent a hierarchy. First, we pretrain 3D diffusion models and use the consistency of their features across subvolumes. Second, we use the visual consistency between subvolumes. Third, we use the invariance to photometric augmentations as a regularizer. Our models achieve better performance than prior unsupervised structure discovery approaches on challenging biologically-inspired synthetic datasets and on a real-world brain tumor MRI dataset.
Learning continuous-time point processes is essential to many discrete event forecasting tasks. However, integration poses a major challenge, particularly for spatiotemporal point processes (STPPs), as it involves calculating the likelihood through triple integrals over space and time. Existing methods for integrating STPP either assume a parametric form of the intensity function, which lacks flexibility; or approximating the intensity with Monte Carlo sampling, which introduces numerical errors. Recent work by Omi et al. [2019] proposes a dual network or AutoInt approach for efficient integration of flexible intensity function. However, the method only focuses on the 1D temporal point process. In this paper, we introduce a novel paradigm: AutoSTPP (Automatic Integration for Spatiotemporal Neural Point Processes) that extends the AutoInt approach to 3D STPP. We show that direct extension of the previous work overly constrains the intensity function, leading to poor performance. We prove consistency of AutoSTPP and validate it on synthetic data and benchmark real world datasets, showcasing its significant advantage in recovering complex intensity functions from irregular spatiotemporal events, particularly when the intensity is sharply localized.
This paper presents an alternative approach to dehomogenisation of elastic Rank-N laminate structures based on the computer graphics discipline of phasor noise. The proposed methodology offers an improvement of existing methods, where high-quality single-scale designs can be obtained efficiently without the utilisation of any least-squares problem or pre-trained models. By utilising a continuous and periodic representation of the translation at each intermediate step, appropriate length-scale and thicknesses can be obtained. Numerical tests verifies the performance of the proposed methodology compared to state-of-the-art alternatives, and the dehomogenised designs achieve structural performance within a few percentages of the optimised homogenised solution. The nature of the phasor-based dehomogenisation is inherently mesh-independent and highly parallelisable, allowing for further efficient implementations and future extensions to 3D problems on unstructured meshes.
This paper develops an updatable inverse probability weighting (UIPW) estimation for the generalized linear models with response missing at random in streaming data sets. A two-step online updating algorithm is provided for the proposed method. In the first step we construct an updatable estimator for the parameter in propensity function and hence obtain an updatable estimator of the propensity function; in the second step we propose an UIPW estimator with the inverse of the updating propensity function value at each observation as the weight for estimating the parameter of interest. The UIPW estimation is universally applicable due to its relaxation on the constraint on the number of data batches. It is shown that the proposed estimator is consistent and asymptotically normal with the same asymptotic variance as that of the oracle estimator, and hence the oracle property is obtained. The finite sample performance of the proposed estimator is illustrated by the simulation and real data analysis. All numerical studies confirm that the UIPW estimator performs as well as the batch learner.
We consider the problem of forming prediction sets in an online setting where the distribution generating the data is allowed to vary over time. Previous approaches to this problem suffer from over-weighting historical data and thus may fail to quickly react to the underlying dynamics. Here we correct this issue and develop a novel procedure with provably small regret over all local time intervals of a given width. We achieve this by modifying the adaptive conformal inference (ACI) algorithm of Gibbs and Cand\`{e}s (2021) to contain an additional step in which the step-size parameter of ACI's gradient descent update is tuned over time. Crucially, this means that unlike ACI, which requires knowledge of the rate of change of the data-generating mechanism, our new procedure is adaptive to both the size and type of the distribution shift. Our methods are highly flexible and can be used in combination with any baseline predictive algorithm that produces point estimates or estimated quantiles of the target without the need for distributional assumptions. We test our techniques on two real-world datasets aimed at predicting stock market volatility and COVID-19 case counts and find that they are robust and adaptive to real-world distribution shifts.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.