亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study infinite binary words that contain few distinct palindromes. In particular, we classify such words according to their critical exponents. This extends results by Fici and Zamboni [TCS 2013]. Interestingly, the words with 18 and 20 palindromes happen to be morphic images of the fixed point of the morphism $\texttt{0}\mapsto\texttt{01}$, $\texttt{1}\mapsto\texttt{21}$, $\texttt{2}\mapsto\texttt{0}$.

相關內容

We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.

Ensuring that refugees and asylum seekers thrive (e.g., find employment) in their host countries is a profound humanitarian goal, and a primary driver of employment is the geographic location within a host country to which the refugee or asylum seeker is assigned. Recent research has proposed and implemented algorithms that assign refugees and asylum seekers to geographic locations in a manner that maximizes the average employment across all arriving refugees. While these algorithms can have substantial overall positive impact, using data from two industry collaborators we show that the impact of these algorithms can vary widely across key subgroups based on country of origin, age, or educational background. Thus motivated, we develop a simple and interpretable framework for incorporating group fairness into the dynamic refugee assignment problem. In particular, the framework can flexibly incorporate many existing and future definitions of group fairness from the literature (e.g., maxmin, randomized, and proportionally-optimized within-group). Equipped with our framework, we propose two bid-price algorithms that maximize overall employment while simultaneously yielding provable group fairness guarantees. Through extensive numerical experiments using various definitions of group fairness and real-world data from the U.S. and the Netherlands, we show that our algorithms can yield substantial improvements in group fairness compared to an offline benchmark fairness constraints, with only small relative decreases ($\approx$ 1%-5%) in global performance.

Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers $k,\ell$, large enough dicritical digraphs with dichromatic number $k$ contain an orientation of a cycle with at least $\ell$ vertices; (ii) there are functions $f,g$ such that for every subdivision $F^*$ of a digraph $F$, digraphs with directed girth at least $f(F^*)$ and dichromatic number at least $g(F)$ contain a subdivision of $F^*$, and if $F$ is a tree, then $g(F)=|V(F)|$; (iii) there is a function $f$ such that for every subdivision $F^*$ of $TT_3$ (the transitive tournament on three vertices), digraphs with directed girth at least $f(F^*)$ and minimum out-degree at least $2$ contain $F^*$ as a subdivision.

In recent years a great deal of attention has been paid to discretizations of the incompressible Stokes equations that exactly preserve the incompressibility constraint. These are of substantial interest because these discretizations are pressure-robust, i.e. the error estimates for the velocity do not depend on the error in the pressure. Similar considerations arise in nearly incompressible linear elastic solids. Conforming discretizations with this property are now well understood in two dimensions, but remain poorly understood in three dimensions. In this work we state two conjectures on this subject. The first is that the Scott-Vogelius element pair is inf-sup stable on uniform meshes for velocity degree $k \ge 4$; the best result available in the literature is for $k \ge 6$. The second is that there exists a stable space decomposition of the kernel of the divergence for $k \ge 5$. We present numerical evidence supporting our conjectures.

We are interested in generating surfaces with arbitrary roughness and forming patterns on the surfaces. Two methods are applied to construct rough surfaces. In the first method, some superposition of wave functions with random frequencies and angles of propagation are used to get periodic rough surfaces with analytic parametric equations. The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in the generation of pattern formation. Numerical experiments show that the patterns become irregular as the amplitude and frequency of the rough surface increase. For the sake of easy generalization to closed manifolds, we propose a second construction method for rough surfaces, which uses random nodal values and discretized heat filters. We provide numerical evidence that both surface {construction methods} yield comparable patterns to those {observed} in real-life animals.

The use of propensity score (PS) methods has become ubiquitous in causal inference. At the heart of these methods is the positivity assumption. Violation of the positivity assumption leads to the presence of extreme PS weights when estimating average causal effects of interest, such as the average treatment effect (ATE) or the average treatment effect on the treated (ATT), which renders invalid related statistical inference. To circumvent this issue, trimming or truncating the extreme estimated PSs have been widely used. However, these methods require that we specify a priori a threshold and sometimes an additional smoothing parameter. While there are a number of methods dealing with the lack of positivity when estimating ATE, surprisingly there is no much effort in the same issue for ATT. In this paper, we first review widely used methods, such as trimming and truncation in ATT. We emphasize the underlying intuition behind these methods to better understand their applications and highlight their main limitations. Then, we argue that the current methods simply target estimands that are scaled ATT (and thus move the goalpost to a different target of interest), where we specify the scale and the target populations. We further propose a PS weight-based alternative for the average causal effect on the treated, called overlap weighted average treatment effect on the treated (OWATT). The appeal of our proposed method lies in its ability to obtain similar or even better results than trimming and truncation while relaxing the constraint to choose a priori a threshold (or even specify a smoothing parameter). The performance of the proposed method is illustrated via a series of Monte Carlo simulations and a data analysis on racial disparities in health care expenditures.

This paper proposes a new approach to fit a linear regression for symbolic internal-valued variables, which improves both the Center Method suggested by Billard and Diday in \cite{BillardDiday2000} and the Center and Range Method suggested by Lima-Neto, E.A. and De Carvalho, F.A.T. in \cite{Lima2008, Lima2010}. Just in the Centers Method and the Center and Range Method, the new methods proposed fit the linear regression model on the midpoints and in the half of the length of the intervals as an additional variable (ranges) assumed by the predictor variables in the training data set, but to make these fitments in the regression models, the methods Ridge Regression, Lasso, and Elastic Net proposed by Tibshirani, R. Hastie, T., and Zou H in \cite{Tib1996, HastieZou2005} are used. The prediction of the lower and upper of the interval response (dependent) variable is carried out from their midpoints and ranges, which are estimated from the linear regression models with shrinkage generated in the midpoints and the ranges of the interval-valued predictors. Methods presented in this document are applied to three real data sets cardiologic interval data set, Prostate interval data set and US Murder interval data set to then compare their performance and facility of interpretation regarding the Center Method and the Center and Range Method. For this evaluation, the root-mean-squared error and the correlation coefficient are used. Besides, the reader may use all the methods presented herein and verify the results using the {\tt RSDA} package written in {\tt R} language, that can be downloaded and installed directly from {\tt CRAN} \cite{Rod2014}.

Despite neural networks (NN) have been widely applied in various fields and generally outperforms humans, they still lack interpretability to a certain extent, and humans are unable to intuitively understand the decision logic of NN. This also hinders the knowledge interaction between humans and NN, preventing humans from getting involved to give direct guidance when NN's decisions go wrong. While recent research in explainable AI has achieved interpretability of NN from various perspectives, it has not yet provided effective methods for knowledge exchange between humans and NN. To address this problem, we constructed a two-way interaction interface that uses structured representations of visual concepts and their relationships as the "language" for knowledge exchange between humans and NN. Specifically, NN provide intuitive reasoning explanations to humans based on the class-specific structural concepts graph (C-SCG). On the other hand, humans can modify the biases present in the C-SCG through their prior knowledge and reasoning ability, and thus provide direct knowledge guidance to NN through this interface. Through experimental validation, based on this interaction interface, NN can provide humans with easily understandable explanations of the reasoning process. Furthermore, human involvement and prior knowledge can directly and effectively contribute to enhancing the performance of NN.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

北京阿比特科技有限公司