亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spinal cord injuries (SCIs) generally result in sensory and mobility impairments, with torso instability being particularly debilitating. Existing torso stabilisers are often rigid and restrictive. This paper presents an early investigation into a non-restrictive 1 degree-of-freedom (DoF) mechanical torso stabiliser inspired by devices such as centrifugal clutches and seat-belt mechanisms. Firstly, the paper presents a motion-capture (MoCap) and OpenSim-based kinematic analysis of the cable-based system to understand requisite device characteristics. The simulated evaluation resulted in the cable-based device to require 55-60cm of unrestricted travel, and to lock at a threshold cable velocity of 80-100cm/sec. Next, the developed 1-DoF device is introduced. The proposed mechanical device is transparent during activities of daily living, and transitions to compliant blocking when incipient fall is detected. Prototype behaviour was then validated using a MoCap-based kinematic analysis to verify non-restrictive movement, reliable transition to blocking, and compliance of the blocking.

相關內容

The leading strategy for analyzing unstructured data uses two steps. First, latent variables of economic interest are estimated with an upstream information retrieval model. Second, the estimates are treated as "data" in a downstream econometric model. We establish theoretical arguments for why this two-step strategy leads to biased inference in empirically plausible settings. More constructively, we propose a one-step strategy for valid inference that uses the upstream and downstream models jointly. The one-step strategy (i) substantially reduces bias in simulations; (ii) has quantitatively important effects in a leading application using CEO time-use data; and (iii) can be readily adapted by applied researchers.

We utilize extreme learning machines for the prediction of partial differential equations (PDEs). Our method splits the state space into multiple windows that are predicted individually using a single model. Despite requiring only few data points (in some cases, our method can learn from a single full-state snapshot), it still achieves high accuracy and can predict the flow of PDEs over long time horizons. Moreover, we show how additional symmetries can be exploited to increase sample efficiency and to enforce equivariance.

Prompt and effective corrective actions in response to unexpected contingencies are crucial for improving power system resilience and preventing cascading blackouts. The optimal load shedding (OLS) accounting for network limits has the potential to address the diverse system-wide impacts of contingency scenarios as compared to traditional local schemes. However, due to the fast cascading propagation of initial contingencies, real-time OLS solutions are challenging to attain in large systems with high computation and communication needs. In this paper, we propose a decentralized design that leverages offline training of a neural network (NN) model for individual load centers to autonomously construct the OLS solutions from locally available measurements. Our learning-for-OLS approach can greatly reduce the computation and communication needs during online emergency responses, thus preventing the cascading propagation of contingencies for enhanced power grid resilience. Numerical studies on both the IEEE 118-bus system and a synthetic Texas 2000-bus system have demonstrated the efficiency and effectiveness of our scalable OLS learning design for timely power system emergency operations.

Comparative meta-analyses of groups of subjects by integrating multiple observational studies rely on estimated propensity scores (PSs) to mitigate covariate imbalances. However, PS estimation grapples with the theoretical and practical challenges posed by high-dimensional covariates. Motivated by an integrative analysis of breast cancer patients across seven medical centers, this paper tackles the challenges associated with integrating multiple observational datasets. The proposed inferential technique, called Bayesian Motif Submatrices for Covariates (B-MSC), addresses the curse of dimensionality by a hybrid of Bayesian and frequentist approaches. B-MSC uses nonparametric Bayesian "Chinese restaurant" processes to eliminate redundancy in the high-dimensional covariates and discover latent motifs or lower-dimensional structure. With these motifs as potential predictors, standard regression techniques can be utilized to accurately infer the PSs and facilitate covariate-balanced group comparisons. Simulations and meta-analysis of the motivating cancer investigation demonstrate the efficacy of the B-MSC approach to accurately estimate the propensity scores and efficiently address covariate imbalance when integrating observational health studies with high-dimensional covariates.

Current autonomous driving systems heavily rely on V2X communication data to enhance situational awareness and the cooperation between vehicles. However, a major challenge when using V2X data is that it may not be available periodically because of unpredictable delays and data loss during wireless transmission between road stations and the receiver vehicle. This issue should be considered when designing control strategies for connected and autonomous vehicles. Therefore, this paper proposes a novel 'Blind Actor-Critic' algorithm that guarantees robust driving performance in V2X environment with delayed and/or lost data. The novel algorithm incorporates three key mechanisms: a virtual fixed sampling period, a combination of Temporal-Difference and Monte Carlo learning, and a numerical approximation of immediate reward values. To address the temporal aperiodicity problem of V2X data, we first illustrate this challenge. Then, we provide a detailed explanation of the Blind Actor-Critic algorithm where we highlight the proposed components to compensate for the temporal aperiodicity problem of V2X data. We evaluate the performance of our algorithm in a simulation environment and compare it to benchmark approaches. The results demonstrate that training metrics are improved compared to conventional actor-critic algorithms. Additionally, testing results show that our approach provides robust control, even under low V2X network reliability levels.

We study the problem of efficiently detecting Out-of-Distribution (OOD) samples at test time in supervised and unsupervised learning contexts. While ML models are typically trained under the assumption that training and test data stem from the same distribution, this is often not the case in realistic settings, thus reliably detecting distribution shifts is crucial at deployment. We re-formulate the OOD problem under the lenses of statistical testing and then discuss conditions that render the OOD problem identifiable in statistical terms. Building on this framework, we study convergence guarantees of an OOD test based on the Wasserstein distance, and provide a simple empirical evaluation.

In the literature on Kleene algebra, a number of variants have been proposed which impose additional structure specified by a theory, such as Kleene algebra with tests (KAT) and the recent Kleene algebra with observations (KAO), or make specific assumptions about certain constants, as for instance in NetKAT. Many of these variants fit within the unifying perspective offered by Kleene algebra with hypotheses, which comes with a canonical language model constructed from a given set of hypotheses. For the case of KAT, this model corresponds to the familiar interpretation of expressions as languages of guarded strings. A relevant question therefore is whether Kleene algebra together with a given set of hypotheses is complete with respect to its canonical language model. In this paper, we revisit, combine and extend existing results on this question to obtain tools for proving completeness in a modular way. We showcase these tools by giving new and modular proofs of completeness for KAT, KAO and NetKAT, and we prove completeness for new variants of KAT: KAT extended with a constant for the full relation, KAT extended with a converse operation, and a version of KAT where the collection of tests only forms a distributive lattice.

Traditional face super-resolution (FSR) methods trained on synthetic datasets usually have poor generalization ability for real-world face images. Recent work has utilized complex degradation models or training networks to simulate the real degradation process, but this limits the performance of these methods due to the domain differences that still exist between the generated low-resolution images and the real low-resolution images. Moreover, because of the existence of a domain gap, the semantic feature information of the target domain may be affected when synthetic data and real data are utilized to train super-resolution models simultaneously. In this study, a real-world face super-resolution teacher-student model is proposed, which considers the domain gap between real and synthetic data and progressively includes diverse edge information by using the recurrent network's intermediate outputs. Extensive experiments demonstrate that our proposed approach surpasses state-of-the-art methods in obtaining high-quality face images for real-world FSR.

Autonomous vehicle platforms of varying spatial scales are employed within the research and development spectrum based on space, safety and monetary constraints. However, deploying and validating autonomy algorithms across varying operational scales presents challenges due to scale-specific dynamics, sensor integration complexities, computational constraints, regulatory considerations, environmental variability, interaction with other traffic participants and scalability concerns. In such a milieu, this work focuses on developing a unified framework for modeling and simulating digital twins of autonomous vehicle platforms across different scales and operational design domains (ODDs) to help support the streamlined development and validation of autonomy software stacks. Particularly, this work discusses the development of digital twin representations of 4 autonomous ground vehicles, which span across 3 different scales and target 3 distinct ODDs. We study the adoption of these autonomy-oriented digital twins to deploy a common autonomy software stack with an aim of end-to-end map-based navigation to achieve the ODD-specific objective(s) for each vehicle. Finally, we also discuss the flexibility of the proposed framework to support virtual, hybrid as well as physical testing with seamless sim2real transfer.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

北京阿比特科技有限公司