亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When searching for exoplanets, one wants to count how many planets orbit a given star, and to determine what their orbital parameters are. If the estimated orbital elements are too far from those of a planet truly present, this should be considered as a false detection. This setting is a particular instance of a general one: aiming to retrieve which parametric patterns are in a dataset corrupted by nuisance signals, with a certain accuracy on their parameters. We search for a decision rule minimizing false and missed detections, either as a function of their relative cost, or when the expected number of false detections is bounded. We find that if the patterns can be separated in a technical sense, it is sufficient to select the parameter regions with highest posterior probability. We then discuss how the obtained posterior probabilities can be calibrated. We apply our procedure to the retrieval of periodic signals in unevenly sampled time series, emulating the search for exoplanets in radial velocity data. We show on a simulation that, for a given tolerance to false detections, the new criterion leads to 15 to 30\% more true detections than other criteria, including the Bayes factor.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Incomplete covariate vectors are known to be problematic for estimation and inferences on model parameters, but their impact on prediction performance is less understood. We develop an imputation-free method that builds on a random partition model admitting variable-dimension covariates. Cluster-specific response models further incorporate covariates via linear predictors, facilitating estimation of smooth prediction surfaces with relatively few clusters. We exploit marginalization techniques of Gaussian kernels to analytically project response distributions according to any pattern of missing covariates, yielding a local regression with internally consistent uncertainty propagation that utilizes only one set of coefficients per cluster. Aggressive shrinkage of these coefficients regulates uncertainty due to missing covariates. The method allows in- and out-of-sample prediction for any missingness pattern, even if the pattern in a new subject's incomplete covariate vector was not seen in the training data. We develop an MCMC algorithm for posterior sampling that improves a computationally expensive update for latent cluster allocation. Finally, we demonstrate the model's effectiveness for nonlinear point and density prediction under various circumstances by comparing with other recent methods for regression of variable dimensions on synthetic and real data.

With apparently all research on estimation-of-distribution algorithms (EDAs) concentrated on pseudo-Boolean optimization and permutation problems, we undertake the first steps towards using EDAs for problems in which the decision variables can take more than two values, but which are not permutation problems. To this aim, we propose a natural way to extend the known univariate EDAs to such variables. Different from a naive reduction to the binary case, it avoids additional constraints. Since understanding genetic drift is crucial for an optimal parameter choice, we extend the known quantitative analysis of genetic drift to EDAs for multi-valued variables. Roughly speaking, when the variables take $r$ different values, the time for genetic drift to become significant is $r$ times shorter than in the binary case. Consequently, the update strength of the probabilistic model has to be chosen $r$ times lower now. To investigate how desired model updates take place in this framework, we undertake a mathematical runtime analysis on the $r$-valued LeadingOnes problem. We prove that with the right parameters, the multi-valued UMDA solves this problem efficiently in $O(r\log(r)^2 n^2 \log(n))$ function evaluations. Overall, our work shows that EDAs can be adjusted to multi-valued problems, and it gives advice on how to set the main parameters.

We consider random sample splitting for estimation and inference in high dimensional generalized linear models, where we first apply the lasso to select a submodel using one subsample and then apply the debiased lasso to fit the selected model using the remaining subsample. We show that, no matter including a prespecified subset of regression coefficients or not, the debiased lasso estimation of the selected submodel after a single splitting follows a normal distribution asymptotically. Furthermore, for a set of prespecified regression coefficients, we show that a multiple splitting procedure based on the debiased lasso can address the loss of efficiency associated with sample splitting and produce asymptotically normal estimates under mild conditions. Our simulation results indicate that using the debiased lasso instead of the standard maximum likelihood estimator in the estimation stage can vastly reduce the bias and variance of the resulting estimates. We illustrate the proposed multiple splitting debiased lasso method with an analysis of the smoking data of the Mid-South Tobacco Case-Control Study.

In this work we develop a discretisation method for the Brinkman problem that is uniformly well-behaved in all regimes (as identified by a local dimensionless number with the meaning of a friction coefficient) and supports general meshes as well as arbitrary approximation orders. The method is obtained combining ideas from the Hybrid High-Order and Discrete de Rham methods, and its robustness rests on a potential reconstruction and stabilisation terms that change in nature according to the value of the local friction coefficient. We derive error estimates that, thanks to the presence of cut-off factors, are valid across the all regimes and provide extensive numerical validation.

Social and real-world considerations such as robustness, fairness, social welfare and multi-agent tradeoffs have given rise to multi-distribution learning paradigms, such as collaborative, group distributionally robust, and fair federated learning. In each of these settings, a learner seeks to minimize its worst-case loss over a set of $n$ predefined distributions, while using as few samples as possible. In this paper, we establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity. Importantly, our sample complexity bounds exceed that of the sample complexity of learning a single distribution only by an additive factor of $n \log(n) / \epsilon^2$. These improve upon the best known sample complexity of agnostic federated learning by Mohri et al. by a multiplicative factor of $n$, the sample complexity of collaborative learning by Nguyen and Zakynthinou by a multiplicative factor $\log n / \epsilon^3$, and give the first sample complexity bounds for the group DRO objective of Sagawa et al. To achieve optimal sample complexity, our algorithms learn to sample and learn from distributions on demand. Our algorithm design and analysis is enabled by our extensions of stochastic optimization techniques for solving stochastic zero-sum games. In particular, we contribute variants of Stochastic Mirror Descent that can trade off between players' access to cheap one-off samples or more expensive reusable ones.

In this paper, we develop a novel high-dimensional coefficient estimation procedure based on high-frequency data. Unlike usual high-dimensional regression procedure such as LASSO, we additionally handle the heavy-tailedness of high-frequency observations as well as time variations of coefficient processes. Specifically, we employ Huber loss and truncation scheme to handle heavy-tailed observations, while $\ell_{1}$-regularization is adopted to overcome the curse of dimensionality under a sparse coefficient structure. To account for the time-varying coefficient, we estimate local high-dimensional coefficients which are biased estimators due to the $\ell_{1}$-regularization. Thus, when estimating integrated coefficients, we propose a debiasing scheme to enjoy the law of large number property and employ a thresholding scheme to further accommodate the sparsity of the coefficients. We call this Robust thrEsholding Debiased LASSO (RED-LASSO) estimator. We show that the RED-LASSO estimator can achieve a near-optimal convergence rate with only finite $\gamma$th moment for any $\gamma>2$. In the empirical study, we apply the RED-LASSO procedure to the high-dimensional integrated coefficient estimation using high-frequency trading data.

To deploy and operate deep neural models in production, the quality of their predictions, which might be contaminated benignly or manipulated maliciously by input distributional deviations, must be monitored and assessed. Specifically, we study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data, with the aim of detecting input distributional deviations over which the quality of the network's predictions is potentially damaged. Using selective prediction principles, we propose a distribution deviation detection method for DNNs. The proposed method is derived from a tight coverage generalization bound computed over a sample of instances drawn from the true underlying distribution. Based on this bound, our detector continuously monitors the operation of the network over a test window and fires off an alarm whenever a deviation is detected. This novel detection method consistently and significantly outperforms the state of the art with respect to the CIFAR-10 and ImageNet datasets, thus establishing a new performance bar for this task, while being substantially more efficient in time and space complexities.

In this paper we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimising the expected sample size (ESS) under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers which is based on the minimisation of an auxiliary objective function (called Lagrangian). This function is defined as a weighted sum of all the test characteristics we are interested in: the error probabilities and the ESSs evaluated at some points of interest. In this paper, we use a definition of the Lagrangian function involving the ESS evaluated at any finite number of fixed parameter points (not necessarily those representing the hypotheses). Then we develop a computer-oriented method of minimisation of the Lagrangian function, that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, like in Bayesian, Kiefer-Weiss and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population we develop a set of computer algorithms for designing sequential tests that minimise the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS, and other related. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out.

In this paper, we target the problem of sufficient dimension reduction with symmetric positive definite matrices valued responses. We propose the intrinsic minimum average variance estimation method and the intrinsic outer product gradient method which fully exploit the geometric structure of the Riemannian manifold where responses lie. We present the algorithms for our newly developed methods under the log-Euclidean metric and the log-Cholesky metric. Each of the two metrics is linked to an abelian Lie group structure that transforms our model defined on a manifold into a Euclidean one. The proposed methods are then further extended to general Riemannian manifolds. We establish rigourous asymptotic results for the proposed estimators, including the rate of convergence and the asymptotic normality. We also develop a cross validation algorithm for the estimation of the structural dimension with theoretical guarantee Comprehensive simulation studies and an application to the New York taxi network data are performed to show the superiority of the proposed methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司