Training and inference with large machine learning models that far exceed the memory capacity of individual devices necessitates the design of distributed architectures, forcing one to contend with communication constraints. We present a framework for distributed computation over a quantum network in which data is encoded into specialized quantum states. We prove that for certain models within this framework, inference and training using gradient descent can be performed with exponentially less communication compared to their classical analogs, and with relatively modest time and space complexity overheads relative to standard gradient-based methods. To our knowledge, this is the first example of exponential quantum advantage for a generic class of machine learning problems with dense classical data that holds regardless of the data encoding cost. Moreover, we show that models in this class can encode highly nonlinear features of their inputs, and their expressivity increases exponentially with model depth. We also find that, interestingly, the communication advantage nearly vanishes for simpler linear classifiers. These results can be combined with natural privacy advantages in the communicated quantum states that limit the amount of information that can be extracted from them about the data and model parameters. Taken as a whole, these findings form a promising foundation for distributed machine learning over quantum networks.
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution (i.e., clustering) simultaneously, which demonstrates a superior performance over conventional clustering methods with given features. However, the coupled objective implies a trivial solution that all instances collapse to the uniform features. To tackle the challenge, a two-stage training strategy is developed for decoupling, where it introduces an additional pre-training stage for representation learning and then fine-tunes the obtained model for clustering. Meanwhile, one-stage methods are developed mainly for representation learning rather than clustering, where various constraints for cluster assignments are designed to avoid collapsing explicitly. Despite the success of these methods, an appropriate learning objective tailored for deep clustering has not been investigated sufficiently. In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering due to the lack of ground-truth labels and positive instances for certain clusters in each mini-batch. To mitigate the issue, a novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly. Moreover, a global entropy constraint for cluster assignments is studied with efficient optimization. Extensive experiments are conducted on benchmark data sets and ImageNet. SeCu achieves state-of-the-art performance on all of them, which demonstrates the effectiveness of one-stage deep clustering. Code is available at \url{//github.com/idstcv/SeCu}.
In conventional randomized controlled trials, adjustment for baseline values of covariates known to be at least moderately associated with the outcome increases the power of the trial. Recent work has shown particular benefit for more flexible frequentist designs, such as information adaptive and adaptive multi-arm designs. However, covariate adjustment has not been characterized within the more flexible Bayesian adaptive designs, despite their growing popularity. We focus on a subclass of these which allow for early stopping at an interim analysis given evidence of treatment superiority. We consider both collapsible and non-collapsible estimands, and show how to obtain posterior samples of marginal estimands from adjusted analyses. We describe several estimands for three common outcome types. We perform a simulation study to assess the impact of covariate adjustment using a variety of adjustment models in several different scenarios. This is followed by a real world application of the compared approaches to a COVID-19 trial with a binary endpoint. For all scenarios, it is shown that covariate adjustment increases power and the probability of stopping the trials early, and decreases the expected sample sizes as compared to unadjusted analyses.
We introduce a novel dynamic learning-rate scheduling scheme grounded in theory with the goal of simplifying the manual and time-consuming tuning of schedules in practice. Our approach is based on estimating the locally-optimal stepsize, guaranteeing maximal descent in the direction of the stochastic gradient of the current step. We first establish theoretical convergence bounds for our method within the context of smooth non-convex stochastic optimization, matching state-of-the-art bounds while only assuming knowledge of the smoothness parameter. We then present a practical implementation of our algorithm and conduct systematic experiments across diverse datasets and optimization algorithms, comparing our scheme with existing state-of-the-art learning-rate schedulers. Our findings indicate that our method needs minimal tuning when compared to existing approaches, removing the need for auxiliary manual schedules and warm-up phases and achieving comparable performance with drastically reduced parameter tuning.
Linear real-valued computations over distributed datasets are common in many applications, most notably as part of machine learning inference. In particular, linear computations that are quantized, i.e., where the coefficients are restricted to a predetermined set of values (such as $\pm 1$), have gained increasing interest lately due to their role in efficient, robust, or private machine learning models. Given a dataset to store in a distributed system, we wish to encode it so that all such computations could be conducted by accessing a small number of servers, called the access parameter of the system. Doing so relieves the remaining servers to execute other tasks. Minimizing the access parameter gives rise to an access-redundancy tradeoff, where a smaller access parameter requires more redundancy in the system, and vice versa. In this paper, we study this tradeoff and provide several explicit low-access schemes for $\{\pm1\}$ quantized linear computations based on covering codes in a novel way. While the connection to covering codes has been observed in the past, our results strictly outperform the state-of-the-art for two-valued linear computations. We further show that the same storage scheme can be used to retrieve any linear combination with two distinct coefficients -- regardless of what those coefficients are -- with the same access parameter. This universality result is then extended to all possible quantizations with any number of values; while the storage remains identical, the access parameter increases according to a new additive-combinatorics property we call coefficient complexity. We then turn to study the coefficient complexity -- we characterize the complexity of small sets of coefficients, provide bounds, and identify coefficient sets having the highest and lowest complexity.
A typical setup in many machine learning scenarios involves a server that holds a model and a user that possesses data, and the challenge is to perform inference while safeguarding the privacy of both parties. Private Inference has been extensively explored in recent years, mainly from a cryptographic standpoint via techniques like homomorphic encryption and multiparty computation. These approaches often come with high computational overhead and may degrade the accuracy of the model. In our work, we take a different approach inspired by the Private Information Retrieval literature. We view private inference as the task of retrieving inner products of parameter vectors with the data, a fundamental operation in many machine learning models. We introduce schemes that enable such retrieval of inner products for models with quantized (i.e., restricted to a finite set) weights; such models are extensively used in practice due to a wide range of benefits. In addition, our schemes uncover a fundamental tradeoff between user and server privacy. Our information-theoretic approach is applicable to a wide range of problems and robust in privacy guarantees for both the user and the server.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.