亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Being an up-and-coming application scenario of mobile edge computing (MEC), the post-disaster rescue suffers multitudinous computing-intensive tasks but unstably guaranteed network connectivity. In rescue environments, quality of service (QoS), such as task execution delay, energy consumption and battery state of health (SoH), is of significant meaning. This paper studies a multi-user post-disaster MEC environment with unstable 5G communication, where device-to-device (D2D) link communication and dynamic voltage and frequency scaling (DVFS) are adopted to balance each user's requirement for task delay and energy consumption. A battery degradation evaluation approach to prolong battery lifetime is also presented. The distributed optimization problem is formulated into a mixed cooperative-competitive (MCC) multi-agent Markov decision process (MAMDP) and is tackled with recurrent multi-agent Proximal Policy Optimization (rMAPPO). Extensive simulations and comprehensive comparisons with other representative algorithms clearly demonstrate the effectiveness of the proposed rMAPPO-based offloading scheme.

相關內容

Motivated by the recent application of approximate message passing (AMP) to the analysis of convex optimizations in multi-class classifications [Loureiro, et. al., 2021], we present a convergence analysis of AMP dynamics with non-separable multivariate nonlinearities. As an application, we present a complete (and independent) analysis of the motivated convex optimization problem.

Motivated by modern applications such as computerized adaptive testing, sequential rank aggregation, and heterogeneous data source selection, we study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data. The goal is to design experiment selection rules for more accurate model estimation. Greedy information-based experiment selection methods, optimizing the information gain for one-step ahead, have been employed in practice thanks to their computational convenience, flexibility to context or task changes, and broad applicability. However, statistical analysis is restricted to one-dimensional cases due to the problem's combinatorial nature and the seemingly limited capacity of greedy algorithms, leaving the multidimensional problem open. In this study, we close the gap for multidimensional problems. In particular, we propose adopting a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood estimator following these selection rules. This class encompasses both existing methods and introduces new methods with improved numerical efficiency. We prove that these methods produce consistent and asymptotically normal estimators. Additionally, within a decision theory framework, we establish that the proposed methods achieve asymptotic optimality when the risk measure aligns with the selection rule. We also conduct extensive numerical studies on both simulated and real data to illustrate the efficacy of the proposed methods. From a technical perspective, we devise new analytical tools to address theoretical challenges. These analytical tools are of independent theoretical interest and may be reused in related problems involving stochastic approximation and sequential designs.

We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC) in the finite blocklength regime that provides Post-Quantum (PQ) security at high communication rates. Recently, hybrid cryptosystems offered PQ security by premixing the data using secure coding schemes and encrypting only a small portion of it, assuming the data is uniformly distributed. An assumption that is often challenging to enforce. Standard fixed-length lossless source coding and compression schemes guarantee a uniform output in normalized divergence. Yet, his is not sufficient to guarantee security. We consider an efficient almost uniform compression scheme in non-normalized variational distance for the proposed hybrid cryptosystem, that by utilizing uniform sub-linear shared seed, guarantees PQ security. Specifically, for the proposed PQ cryptosystem, first, we provide an end-to-end coding scheme, NU-HUNCC, for non-uniform messages. Second, we show that NU-HUNCC is information-theoretic individually secured (IS) against an eavesdropper with access to any subset of the links. Third, we introduce a modified security definition, individually semantically secure under a chosen ciphertext attack (ISS-CCA1), and show that against an all-observing eavesdropper, NU-HUNCC satisfies its conditions. Finally, we provide an analysis that shows the high communication rate of NU-HUNCC and the negligibility of the shared seed size.

Low-Earth orbit (LEO) satellite systems have been deemed a promising key enabler for current 5G and the forthcoming 6G wireless networks. Such LEO satellite constellations can provide worldwide three-dimensional coverage, high data rate, and scalability, thus enabling truly ubiquitous connectivity. On the other hand, another promising technology, reconfigurable intelligent surfaces (RISs), has emerged with favorable features, such as flexible deployment, cost & power efficiency, less transmission delay, noise-free nature, and in-band full-duplex structure. LEO satellite networks have many practical imperfections and limitations; however, exploiting RISs has been shown to be a potential solution to overcome these challenges. Particularly, RISs can enhance link quality, reduce the Doppler shift effect, and mitigate inter-/intra beam interference. In this article, we delve into exploiting RISs in LEO satellite networks. First, we present a holistic overview of LEO satellite communication and RIS technology, highlighting potential benefits and challenges. Second, we describe promising usage scenarios and applications in detail. Finally, we discuss potential future directions and challenges on RIS-empowered LEO networks, offering futuristic visions of the upcoming 6G era.

Mini-applications, commonly referred to as mini-apps, are compact software programs embedded within larger applications or platforms, offering targeted functionality without the need for separate installations. Typically web-based or cloud-hosted, these mini-apps streamline user experiences by providing focused services accessible through web browsers or mobile apps. Their simplicity, speed, and integration capabilities make them valuable additions to messaging platforms, social media networks, e-commerce sites, and various digital environments. WeChat Mini Programs, a prominent feature of China's leading messaging app, exemplify this trend, offering users a seamless array of services without additional downloads. Leveraging WeChat's extensive user base and payment infrastructure, Mini Programs facilitate efficient transactions and bridge online and offline experiences, shaping China's digital landscape significantly. This paper investigates the potential of employing Large Language Models (LLMs) to detect privacy breaches within WeChat Mini Programs. Given the widespread use of Mini Programs and growing concerns about data privacy, this research seeks to determine if LLMs can effectively identify instances of privacy leakage within this ecosystem. Through meticulous analysis and experimentation, we aim to highlight the efficacy of LLMs in safeguarding user privacy and security within the WeChat Mini Program environment, thereby contributing to a more secure digital landscape.

Nowadays, the demand for image transmission over wireless networks has surged significantly. To meet the need for swift delivery of high-quality images through time-varying channels with limited bandwidth, the development of efficient transmission strategies and techniques for preserving image quality is of importance. This paper introduces an innovative approach to Joint Source-Channel Coding (JSCC) tailored for wireless image transmission. It capitalizes on the power of Compressed Sensing (CS) to achieve superior compression and resilience to channel noise. In this method, the process begins with the compression of images using a block-based CS technique implemented through a Convolutional Neural Network (CNN) structure. Subsequently, the images are encoded by directly mapping image blocks to complex-valued channel input symbols. Upon reception, the data is decoded to recover the channel-encoded information, effectively removing the noise introduced during transmission. To finalize the process, a novel CNN-based reconstruction network is employed to restore the original image from the channel-decoded data. The performance of the proposed method is assessed using the CIFAR-10 and Kodak datasets. The results illustrate a substantial improvement over existing JSCC frameworks when assessed in terms of metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) across various channel Signal-to-Noise Ratios (SNRs) and channel bandwidth values. These findings underscore the potential of harnessing CNN-based CS for the development of deep JSCC algorithms tailored for wireless image transmission.

Autonomous robot navigation within the dynamic unknown environment is of crucial significance for mobile robotic applications including robot navigation in last-mile delivery and robot-enabled automated supplies in industrial and hospital delivery applications. Current solutions still suffer from limitations, such as the robot cannot recognize unknown objects in real time and cannot navigate freely in a dynamic, narrow, and complex environment. We propose a complete software framework for autonomous robot perception and navigation within very dense obstacles and dense human crowds. First, we propose a framework that accurately detects and segments open-world object categories in a zero-shot manner, which overcomes the over-segmentation limitation of the current SAM model. Second, we proposed the distillation strategy to distill the knowledge to segment the free space of the walkway for robot navigation without the label. In the meantime, we design the trimming strategy that works collaboratively with distillation to enable lightweight inference to deploy the neural network on edge devices such as NVIDIA-TX2 or Xavier NX during autonomous navigation. Integrated into the robot navigation system, extensive experiments demonstrate that our proposed framework has achieved superior performance in terms of both accuracy and efficiency in robot scene perception and autonomous robot navigation.

We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness, by leveraging information on the curvature of the problem.

This paper considers the problem of downlink localization and user equipments (UEs) tracking with an adaptive procedure for a range of distances. We provide the base station (BS) with two signaling schemes and the UEs with two localization algorithms, assuming far-field (FF) and near-field (NF) conditions, respectively. The proposed schemes employ different beam-sweep patterns, where their compatibility depends on the UE range. Consequently, the FF-NF distinction transcends the traditional definition. Our proposed NF scheme requires beam-focusing on specific spots and more transmissions are required to sweep the area. Instead, the FF scheme assumes distant UEs, and fewer beams are sufficient. We derive a low-complexity algorithm that exploits the FF channel model and highlight its practical benefits and the limitations. Also, we propose an iterative adaptive procedure, where the signaling scheme is depends on the expected accuracy-complexity trade-off. Multiple iterations introduce a tracking application, where the formed trajectory dictates the validity of our assumptions. Moreover, the range from the BS, where the FF signaling scheme can be successfully employed, is investigated. We show that the conventional Fraunhofer distance is not sufficient for adaptive localization and tracking algorithms in the mixed NF and FF environment.

Large language model (LLM) applications, such as ChatGPT, are a powerful tool for online information-seeking (IS) and problem-solving tasks. However, users still face challenges initializing and refining prompts, and their cognitive barriers and biased perceptions further impede task completion. These issues reflect broader challenges identified within the fields of IS and interactive information retrieval (IIR). To address these, our approach integrates task context and user perceptions into human-ChatGPT interactions through prompt engineering. We developed a ChatGPT-like platform integrated with supportive functions, including perception articulation, prompt suggestion, and conversation explanation. Our findings of a user study demonstrate that the supportive functions help users manage expectations, reduce cognitive loads, better refine prompts, and increase user engagement. This research enhances our comprehension of designing proactive and user-centric systems with LLMs. It offers insights into evaluating human-LLM interactions and emphasizes potential challenges for under served users.

北京阿比特科技有限公司