Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.
Time series analysis is widely used in extensive areas. Recently, to reduce labeling expenses and benefit various tasks, self-supervised pre-training has attracted immense interest. One mainstream paradigm is masked modeling, which successfully pre-trains deep models by learning to reconstruct the masked content based on the unmasked part. However, since the semantic information of time series is mainly contained in temporal variations, the standard way of randomly masking a portion of time points will seriously ruin vital temporal variations of time series, making the reconstruction task too difficult to guide representation learning. We thus present SimMTM, a Simple pre-training framework for Masked Time-series Modeling. By relating masked modeling to manifold learning, SimMTM proposes to recover masked time points by the weighted aggregation of multiple neighbors outside the manifold, which eases the reconstruction task by assembling ruined but complementary temporal variations from multiple masked series. SimMTM further learns to uncover the local structure of the manifold, which is helpful for masked modeling. Experimentally, SimMTM achieves state-of-the-art fine-tuning performance compared to the most advanced time series pre-training methods in two canonical time series analysis tasks: forecasting and classification, covering both in- and cross-domain settings.
The field of safe multi-agent reinforcement learning, despite its potential applications in various domains such as drone delivery and vehicle automation, remains relatively unexplored. Training agents to learn optimal policies that maximize rewards while considering specific constraints can be challenging, particularly in scenarios where having a central controller to coordinate the agents during the training process is not feasible. In this paper, we address the problem of multi-agent policy optimization in a decentralized setting, where agents communicate with their neighbors to maximize the sum of their cumulative rewards while also satisfying each agent's safety constraints. We consider both peak and average constraints. In this scenario, there is no central controller coordinating the agents and both the rewards and constraints are only known to each agent locally/privately. We formulate the problem as a decentralized constrained multi-agent Markov Decision Problem and propose a momentum-based decentralized policy gradient method, DePAint, to solve it. To the best of our knowledge, this is the first privacy-preserving fully decentralized multi-agent reinforcement learning algorithm that considers both peak and average constraints. We also provide theoretical analysis and empirical evaluation of our algorithm in various scenarios and compare its performance to centralized algorithms that consider similar constraints.
Generative self-supervised learning (SSL) has exhibited significant potential and garnered increasing interest in graph learning. In this study, we aim to explore the problem of generative SSL in the context of heterogeneous graph learning (HGL). The previous SSL approaches for heterogeneous graphs have primarily relied on contrastive learning, necessitating the design of complex views to capture heterogeneity. However, existing generative SSL methods have not fully leveraged the capabilities of generative models to address the challenges of HGL. In this paper, we present HGCVAE, a novel contrastive variational graph auto-encoder that liberates HGL from the burden of intricate heterogeneity capturing. Instead of focusing on complicated heterogeneity, HGCVAE harnesses the full potential of generative SSL. HGCVAE innovatively consolidates contrastive learning with generative SSL, introducing several key innovations. Firstly, we employ a progressive mechanism to generate high-quality hard negative samples for contrastive learning, utilizing the power of variational inference. Additionally, we present a dynamic mask strategy to ensure effective and stable learning. Moreover, we propose an enhanced scaled cosine error as the criterion for better attribute reconstruction. As an initial step in combining generative and contrastive SSL, HGCVAE achieves remarkable results compared to various state-of-the-art baselines, confirming its superiority.
Video instance segmentation, also known as multi-object tracking and segmentation, is an emerging computer vision research area introduced in 2019, aiming at detecting, segmenting, and tracking instances in videos simultaneously. By tackling the video instance segmentation tasks through effective analysis and utilization of visual information in videos, a range of computer vision-enabled applications (e.g., human action recognition, medical image processing, autonomous vehicle navigation, surveillance, etc) can be implemented. As deep-learning techniques take a dominant role in various computer vision areas, a plethora of deep-learning-based video instance segmentation schemes have been proposed. This survey offers a multifaceted view of deep-learning schemes for video instance segmentation, covering various architectural paradigms, along with comparisons of functional performance, model complexity, and computational overheads. In addition to the common architectural designs, auxiliary techniques for improving the performance of deep-learning models for video instance segmentation are compiled and discussed. Finally, we discuss a range of major challenges and directions for further investigations to help advance this promising research field.
Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models, which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost models, we bypass this requirement by evaluating candidate plans via actual execution data and training an ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on multiple datasets on PostgreSQL.
Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.