In this paper, we develop a novel class of linear energy-preserving integrating factor methods for the 2D nonlinear Schr\"odinger equation with wave operator (NLSW), combining the scalar auxiliary variable approach and the integrating factor methods. A second-order scheme is first proposed, which is rigorously proved to be energy-preserving. By using the energy methods, we analyze its optimal convergence in the $H^1$ norm without any restrictions on the grid ratio, where a novel technique and an improved induction argument are proposed to overcome the difficulty posed by the unavailability of a priori $L^\infty$ estimates of numerical solutions. Based on the integrating factor Runge-Kutta methods, we extend the proposed scheme to arbitrarily high order, which is also linear and conservative. Numerical experiments are presented to confirm the theoretical analysis and demonstrate the advantages of the proposed methods.
Butterfly Optimization Algorithm (BOA) is a recent metaheuristic that has been used in several optimization problems. In this paper, we propose a new version of the algorithm (xBOA) based on the crossover operator and compare its results to the original BOA and 3 other variants recently introduced in the literature. We also proposed a framework for solving the unknown area exploration problem with energy constraints using metaheuristics in both single- and multi-robot scenarios. This framework allowed us to benchmark the performances of different metaheuristics for the robotics exploration problem. We conducted several experiments to validate this framework and used it to compare the effectiveness of xBOA with wellknown metaheuristics used in the literature through 5 evaluation criteria. Although BOA and xBOA are not optimal in all these criteria, we found that BOA can be a good alternative to many metaheuristics in terms of the exploration time, while xBOA is more robust to local optima; has better fitness convergence; and achieves better exploration rates than the original BOA and its other variants.
In this work, the generalized broken soliton-like (gBS-like) equation is derived through the generalized bilinear method. The neural network model, which can fit the explicit solution with zero error, is found. The interference wave solution of the gBS-like equation is obtained by using the bilinear neural network method (BNNM) and physical informed neural networks (PINNs). Interference waves are shown well via three-dimensional plots and density plots. Compared with PINNs, the bilinear neural network method is not only more accurate but also faster.
We develop a hybrid spatial discretization for the wave equation in second order form, based on high-order accurate finite difference methods and discontinuous Galerkin methods. The hybridization combines computational efficiency of finite difference methods on Cartesian grids and geometrical flexibility of discontinuous Galerkin methods on unstructured meshes. The two spatial discretizations are coupled by a penalty technique at the interface such that the overall semidiscretization satisfies a discrete energy estimate to ensure stability. In addition, optimal convergence is obtained in the sense that when combining a fourth order finite difference method with a discontinuous Galerkin method using third order local polynomials, the overall convergence rate is fourth order. Furthermore, we use a novel approach to derive an error estimate for the semidiscretization by combining the energy method and the normal mode analysis for a corresponding one dimensional model problem. The stability and accuracy analysis are verified in numerical experiments.
We consider energy stable summation by parts finite difference methods (SBP-FD) for the homogeneous and piecewise homogeneous dynamic beam equation (DBE). Previously the constant coefficient problem has been solved with SBP-FD together with penalty terms (SBP-SAT) to impose boundary conditions. In this work we revisit this problem and compare SBP-SAT to the projection method (SBP-P). We also consider the DBE with discontinuous coefficients and present novel SBP-SAT, SBP-P and hybrid SBP-SAT-P discretizations for imposing interface conditions. Numerical experiments show that all methods considered are similar in terms of accuracy, but that SBP-P can be more computationally efficient (less restrictive time step requirement for explicit time integration methods) for both the constant and piecewise constant coefficient problems.
Imposition methods of interface conditions for the second-order wave equation with non-conforming grids is considered. The spatial discretization is based on high order finite differences with summation-by-parts properties. Previously presented solution methods for this problem, based on the simultaneous approximation term (SAT) method, have shown to introduce significant stiffness. This can lead to highly inefficient schemes. Here, two new methods of imposing the interface conditions to avoid the stiffness problems are presented: 1) a projection method and 2) a hybrid between the projection method and the SAT method. Numerical experiments are performed using traditional and order-preserving interpolation operators. Both of the novel methods retain the accuracy and convergence behavior of the previously developed SAT method but are significantly less stiff.
We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of a \textit{convex-concave} unconstrained min-max optimization problem. Compared to their first-order counterparts, investigations of second-order methods for min-max optimization are relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we highlight how second-order information can be used to speed up the dynamics of dual extrapolation methods {despite inexactness}. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without requiring any compactness assumptions. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.
We present two (a decoupled and a coupled) integral-equation-based methods for the Morse-Ingard equations subject to Neumann boundary conditions on the exterior domain. Both methods are based on second-kind integral equation (SKIE) formulations. The coupled method is well-conditioned and can achieve high accuracy. The decoupled method has lower computational cost and more flexibility in dealing with the boundary layer; however, it is prone to the ill-conditioning of the decoupling transform and cannot achieve as high accuracy as the coupled method. We show numerical examples using a Nystr\"om method based on quadrature-by-expansion (QBX) with fast-multipole acceleration. We demonstrate the accuracy and efficiency of the solvers in both two and three dimensions with complex geometry.
One common approach to detecting change-points is minimizing a cost function over possible numbers and locations of change-points. The framework includes several well-established procedures, such as the penalized likelihood and minimum description length. Such an approach requires finding the cost value repeatedly over different segments of the data set, which can be time-consuming when (i) the data sequence is long and (ii) obtaining the cost value involves solving a non-trivial optimization problem. This paper introduces a new sequential method (SE) that can be coupled with gradient descent (SeGD) and quasi-Newton's method (SeN) to find the cost value effectively. The core idea is to update the cost value using the information from previous steps without re-optimizing the objective function. The new method is applied to change-point detection in generalized linear models and penalized regression. Numerical studies show that the new approach can be orders of magnitude faster than the Pruned Exact Linear Time (PELT) method without sacrificing estimation accuracy.
Time-dependent Partial Differential Equations with given initial conditions are considered in this paper. New differentiation techniques of the unknown solution with respect to time variable are proposed. It is shown that the proposed techniques allow to generate accurate higher order derivatives simultaneously for a set of spatial points. The calculated derivatives can then be used for data-driven solution in different ways. An application for Physics Informed Neural Networks by the well-known DeepXDE software solution in Python under Tensorflow background framework has been presented for three real-life PDEs: Burgers', Allen-Cahn and Schrodinger equations.
Modified Patankar-Runge-Kutta (MPRK) methods preserve the positivity as well as conservativity of a production-destruction system (PDS) of ordinary differential equations for all time step sizes. As a result, higher order MPRK schemes do not belong to the class of general linear methods, i.e. the iterates are generated by a nonlinear map $\mathbf g$ even when the PDS is linear. Moreover, due to the conservativity of the method, the map $\mathbf g$ possesses non-hyperbolic fixed points. Recently, a new theorem for the investigation of stability properties of non-hyperbolic fixed points of a nonlinear iteration map was developed. We apply this theorem to understand the stability properties of a family of second order MPRK methods when applied to a nonlinear PDS of ordinary differential equations. It is shown that the fixed points are stable for all time step sizes and members of the MPRK family. Finally, experiments are presented to numerically support the theoretical claims.