亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Occupancy prediction tasks focus on the inference of both geometry and semantic labels for each voxel, which is an important perception mission. However, it is still a semantic segmentation task without distinguishing various instances. Further, although some existing works, such as Open-Vocabulary Occupancy (OVO), have already solved the problem of open vocabulary detection, visual grounding in occupancy has not been solved to the best of our knowledge. To tackle the above two limitations, this paper proposes Occupancy Grounding (OG), a novel method that equips vanilla occupancy instance segmentation ability and could operate visual grounding in a voxel manner with the help of grounded-SAM. Keys to our approach are (1) affinity field prediction for instance clustering and (2) association strategy for aligning 2D instance masks and 3D occupancy instances. Extensive experiments have been conducted whose visualization results and analysis are shown below. Our code will be publicly released soon.

相關內容

There is growing interest in Bayesian clinical trial designs with informative prior distributions, e.g. for extrapolation of adult data to pediatrics, or use of external controls. While the classical type I error is commonly used to evaluate such designs, it cannot be strictly controlled and it is acknowledged that other metrics may be more appropriate. We focus on two common situations - borrowing control data or information on the treatment contrast - and discuss several fully probabilistic metrics to evaluate the risk of false positive conclusions. Each metric requires specification of a design prior, which can differ from the analysis prior and permits understanding of the behaviour of a Bayesian design under scenarios where the analysis prior differs from the true data generation process. The metrics include the average type I error and the pre-posterior probability of a false positive result. We show that, when borrowing control data, the average type I error is asymptotically (in certain cases strictly) controlled when the analysis and design prior coincide. We illustrate use of these Bayesian metrics with real applications, and discuss how they could facilitate discussions between sponsors, regulators and other stakeholders about the appropriateness of Bayesian borrowing designs for pivotal studies.

Correlation matrix visualization is essential for understanding the relationships between variables in a dataset, but missing data can pose a significant challenge in estimating correlation coefficients. In this paper, we compare the effects of various missing data methods on the correlation plot, focusing on two common missing patterns: random and monotone. We aim to provide practical strategies and recommendations for researchers and practitioners in creating and analyzing the correlation plot. Our experimental results suggest that while imputation is commonly used for missing data, using imputed data for plotting the correlation matrix may lead to a significantly misleading inference of the relation between the features. We recommend using DPER, a direct parameter estimation approach, for plotting the correlation matrix based on its performance in the experiments.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.

In swarm robotics, agents interact through local roles to solve complex tasks beyond an individual's ability. Even though swarms are capable of carrying out some operations without the need for human intervention, many safety-critical applications still call for human operators to control and monitor the swarm. There are novel challenges to effective Human-Swarm Interaction (HSI) that are only beginning to be addressed. Explainability is one factor that can facilitate effective and trustworthy HSI and improve the overall performance of Human-Swarm team. Explainability was studied across various Human-AI domains, such as Human-Robot Interaction and Human-Centered ML. However, it is still ambiguous whether explanations studied in Human-AI literature would be beneficial in Human-Swarm research and development. Furthermore, the literature lacks foundational research on the prerequisites for explainability requirements in swarm robotics, i.e., what kind of questions an explainable swarm is expected to answer, and what types of explanations a swarm is expected to generate. By surveying 26 swarm experts, we seek to answer these questions and identify challenges experts faced to generate explanations in Human-Swarm environments. Our work contributes insights into defining a new area of research of eXplainable Swarm (xSwarm) which looks at how explainability can be implemented and developed in swarm systems. This paper opens the discussion on xSwarm and paves the way for more research in the field.

Topic modeling is pivotal in discerning hidden semantic structures within texts, thereby generating meaningful descriptive keywords. While innovative techniques like BERTopic and Top2Vec have recently emerged in the forefront, they manifest certain limitations. Our analysis indicates that these methods might not prioritize the refinement of their clustering mechanism, potentially compromising the quality of derived topic clusters. To illustrate, Top2Vec designates the centroids of clustering results to represent topics, whereas BERTopic harnesses C-TF-IDF for its topic extraction.In response to these challenges, we introduce "TF-RDF" (Term Frequency - Relative Document Frequency), a distinctive approach to assess the relevance of terms within a document. Building on the strengths of TF-RDF, we present MPTopic, a clustering algorithm intrinsically driven by the insights of TF-RDF. Through comprehensive evaluation, it is evident that the topic keywords identified with the synergy of MPTopic and TF-RDF outperform those extracted by both BERTopic and Top2Vec.

It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. However, such audit process generally requires access to ground-truth segmentation masks for the target population, which may not always be available, especially when going from development to deployment. Here we propose a new method to anticipate model biases in biomedical image segmentation in the absence of ground-truth annotations. Our unsupervised bias discovery method leverages the reverse classification accuracy framework to estimate segmentation quality. Through numerical experiments in synthetic and realistic scenarios we show how our method is able to successfully anticipate fairness issues in the absence of ground-truth labels, constituting a novel and valuable tool in this field.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司