We give generators and relations for the hypergraph props of Gaussian relations and positive affine Lagrangian relations. The former extends Gaussian probabilistic processes by completely-uninformative priors, and the latter extends Gaussian quantum mechanics with infinitely-squeezed states. These presentations are given by adding a generator to the presentation of real affine relations and of real affine Lagrangian relations which freely codiscards effects, as well as certain rotations. The presentation of positive affine Lagrangian relations provides a rigorous justification for many common yet informal calculations in the quantum physics literature involving infinite-squeezing. Our presentation naturally extends Menicucci et al.'s graph-theoretic representation of Gaussian quantum states with a representation for Gaussian transformations. Using this graphical calculus, we also give a graphical proof of Braunstein and Kimble's continuous-variable quantum teleportation protocol. We also interpret the LOv-calculus, a diagrammatic calculus for reasoning about passive linear-optical quantum circuits in our graphical calculus. Moreover, we show how our presentation allows for additional optical operations such as active squeezing.
A critical issue in approximating solutions of ordinary differential equations using neural networks is the exact satisfaction of the boundary or initial conditions. For this purpose, neural forms have been introduced, i.e., functional expressions that depend on neural networks which, by design, satisfy the prescribed conditions exactly. Expanding upon prior progress, the present work contributes in three distinct aspects. First, it presents a novel formalism for crafting optimized neural forms. Second, it outlines a method for establishing an upper bound on the absolute deviation from the exact solution. Third, it introduces a technique for converting problems with Neumann or Robin conditions into equivalent problems with parametric Dirichlet conditions. The proposed optimized neural forms were numerically tested on a set of diverse problems, encompassing first-order and second-order ordinary differential equations, as well as first-order systems. Stiff and delay differential equations were also considered. The obtained solutions were compared against solutions obtained via Runge-Kutta methods and exact solutions wherever available. The reported results and analysis verify that in addition to the exact satisfaction of the boundary or initial conditions, optimized neural forms provide closed-form solutions of superior interpolation capability and controllable overall accuracy.
We study the stability and sensitivity of an absorbing layer for the Boltzmann equation by examining the Bhatnagar-Gross-Krook (BGK) approximation and using the perfectly matched layer (PML) technique. To ensure stability, we discard some parameters in the model and calculate the total sensitivity indices of the remaining parameters using the ANOVA expansion of multivariate functions. We conduct extensive numerical experiments on two test cases to study stability and compute the total sensitivity indices, which allow us to identify the essential parameters of the model.
Recent work has demonstrated the utility of introducing non-linearity through repeat-until-success (RUS) sub-routines into quantum circuits for generative modeling. As a follow-up to this work, we investigate two questions of relevance to the quantum algorithms and machine learning communities: Does introducing this form of non-linearity make the learning model classically simulatable due to the deferred measurement principle? And does introducing this form of non-linearity make the overall model's training more unstable? With respect to the first question, we demonstrate that the RUS sub-routines do not allow us to trivially map this quantum model to a classical one, whereas a model without RUS sub-circuits containing mid-circuit measurements could be mapped to a classical Bayesian network due to the deferred measurement principle of quantum mechanics. This strongly suggests that the proposed form of non-linearity makes the model classically in-efficient to simulate. In the pursuit of the second question, we train larger models than previously shown on three different probability distributions, one continuous and two discrete, and compare the training performance across multiple random trials. We see that while the model is able to perform exceptionally well in some trials, the variance across trials with certain datasets quantifies its relatively poor training stability.
Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge. Insufficient prior knowledge hinders the determination of an accurate candidate library, while noisy observations lead to imprecise evaluations, which in turn result in redundant function terms or erroneous equations. This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a novel reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with higher rewards are utilized to iteratively optimize the generator via the RL strategy and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.
Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.
We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.
We propose a local discontinuous Galerkin (LDG) method for fractional Korteweg-de Vries equation involving the fractional Laplacian with exponent $\alpha\in (1,2)$ in one and two space dimensions. By decomposing the fractional Laplacian into a first order derivative and a fractional integral, we prove $L^2$-stability of the semi-discrete LDG scheme incorporating suitable interface and boundary fluxes. We analyze the error estimate by considering linear convection term and utilizing the estimate, we derive the error estimate for general nonlinear flux and demonstrate an order of convergence $\mathcal{O}(h^{k+1/2})$. Moreover, the stability and error analysis have been extended to multiple space dimensional case. Additionally, we devise a fully discrete LDG scheme using the four-stage fourth-order Runge-Kutta method. We prove that the scheme is strongly stable under an appropriate time step constraint by establishing a \emph{three-step strong stability} estimate. Numerical illustrations are shown to demonstrate the efficiency of the scheme by obtaining an optimal order of convergence.
Scopus and the Web of Science have been the foundation for research in the science of science even though these traditional databases systematically underrepresent certain disciplines and world regions. In response, new inclusive databases, notably OpenAlex, have emerged. While many studies have begun using OpenAlex as a data source, few critically assess its limitations. This study, conducted in collaboration with the OpenAlex team, addresses this gap by comparing OpenAlex to Scopus across a number of dimensions. The analysis concludes that OpenAlex is a superset of Scopus and can be a reliable alternative for some analyses, particularly at the country level. Despite this, issues of metadata accuracy and completeness show that additional research is needed to fully comprehend and address OpenAlex's limitations. Doing so will be necessary to confidently use OpenAlex across a wider set of analyses, including those that are not at all possible with more constrained databases.
This work is concerned with implementing the hybridizable discontinuous Galerkin (HDG) method to solve the linear anisotropic elastic equation in the frequency domain. First-order formulation with the compliance tensor and Voigt notation are employed to provide a compact description of the discretized problem and flexibility with highly heterogeneous media. We further focus on the question of optimal choices of stabilization in the definition of HDG numerical traces. For this purpose, we construct a hybridized Godunov-upwind flux for anisotropic elastic media possessing three distinct wavespeeds. This stabilization removes the need to choose a scaling factor, contrary to the identity and Kelvin-Christoffel based stabilizations which are popular choices in the literature. We carry out comparisons among these families for isotropic and anisotropic material, with constant background and highly heterogeneous ones, in two and three dimensions. These experiments establish the optimality of the Godunov stabilization which can be used as a reference choice for a generic material in which different types of waves propagate.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.