亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explainability in Graph Neural Networks (GNNs) is a new field growing in the last few years. In this publication we address the problem of determining how important is each neighbor for the GNN when classifying a node and how to measure the performance for this specific task. To do this, various known explainability methods are reformulated to get the neighbor importance and four new metrics are presented. Our results show that there is almost no difference between the explanations provided by gradient-based techniques in the GNN domain. In addition, many explainability techniques failed to identify important neighbors when GNNs without self-loops are used.

相關內容

While the continuous Entropic Optimal Transport (EOT) field has been actively developing in recent years, it became evident that the classic EOT problem is prone to different issues like the sensitivity to outliers and imbalance of classes in the source and target measures. This fact inspired the development of solvers that deal with the unbalanced EOT (UEOT) problem $-$ the generalization of EOT allowing for mitigating the mentioned issues by relaxing the marginal constraints. Surprisingly, it turns out that the existing solvers are either based on heuristic principles or heavy-weighted with complex optimization objectives involving several neural networks. We address this challenge and propose a novel theoretically-justified, lightweight, unbalanced EOT solver. Our advancement consists of developing a novel view on the optimization of the UEOT problem yielding tractable and a non-minimax optimization objective. We show that combined with a light parametrization recently proposed in the field our objective leads to a fast, simple, and effective solver which allows solving the continuous UEOT problem in minutes on CPU. We prove that our solver provides a universal approximation of UEOT solutions and obtain its generalization bounds. We give illustrative examples of the solver's performance.

Hands are a fundamental tool humans use to interact with the environment and objects. Through hand motions, we can obtain information about the shape and materials of the surfaces we touch, modify our surroundings by interacting with objects, manipulate objects and tools, or communicate with other people by leveraging the power of gestures. For these reasons, sensorized gloves, which can collect information about hand motions and interactions, have been of interest since the 1980s in various fields, such as Human-Machine Interaction (HMI) and the analysis and control of human motions. Over the last 40 years, research in this field explored different technological approaches and contributed to the popularity of wearable custom and commercial products targeting hand sensorization. Despite a positive research trend, these instruments are not widespread yet outside research environments and devices aimed at research are often ad hoc solutions with a low chance of being reused. This paper aims to provide a systematic literature review for custom gloves to analyze their main characteristics and critical issues, from the type and number of sensors to the limitations due to device encumbrance. The collection of this information lays the foundation for a standardization process necessary for future breakthroughs in this research field.

The study of behavioral diversity in Multi-Agent Reinforcement Learning (MARL) is a nascent yet promising field. In this context, the present work deals with the question of how to control the diversity of a multi-agent system. With no existing approaches to control diversity to a set value, current solutions focus on blindly promoting it via intrinsic rewards or additional loss functions, effectively changing the learning objective and lacking a principled measure for it. To address this, we introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL. Multimedia results are available on the paper's website: //sites.google.com/view/dico-marl.

In this paper we present Large Language Model Assisted Retrieval Model Ranking (LARMOR), an effective unsupervised approach that leverages LLMs for selecting which dense retriever to use on a test corpus (target). Dense retriever selection is crucial for many IR applications that rely on using dense retrievers trained on public corpora to encode or search a new, private target corpus. This is because when confronted with domain shift, where the downstream corpora, domains, or tasks of the target corpus differ from the domain/task the dense retriever was trained on, its performance often drops. Furthermore, when the target corpus is unlabeled, e.g., in a zero-shot scenario, the direct evaluation of the model on the target corpus becomes unfeasible. Unsupervised selection of the most effective pre-trained dense retriever becomes then a crucial challenge. Current methods for dense retriever selection are insufficient in handling scenarios with domain shift. Our proposed solution leverages LLMs to generate pseudo-relevant queries, labels and reference lists based on a set of documents sampled from the target corpus. Dense retrievers are then ranked based on their effectiveness on these generated pseudo-relevant signals. Notably, our method is the first approach that relies solely on the target corpus, eliminating the need for both training corpora and test labels. To evaluate the effectiveness of our method, we construct a large pool of state-of-the-art dense retrievers. The proposed approach outperforms existing baselines with respect to both dense retriever selection and ranking. We make our code and results publicly available at //github.com/ielab/larmor/.

The Linearized Laplace Approximation (LLA) has been recently used to perform uncertainty estimation on the predictions of pre-trained deep neural networks (DNNs). However, its widespread application is hindered by significant computational costs, particularly in scenarios with a large number of training points or DNN parameters. Consequently, additional approximations of LLA, such as Kronecker-factored or diagonal approximate GGN matrices, are utilized, potentially compromising the model's performance. To address these challenges, we propose a new method for approximating LLA using a variational sparse Gaussian Process (GP). Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN. Furthermore, it allows for efficient stochastic optimization, which results in sub-linear training time in the size of the training dataset. Specifically, its training cost is independent of the number of training points. We compare our proposed method against accelerated LLA (ELLA), which relies on the Nystr\"om approximation, as well as other LLA variants employing the sample-then-optimize principle. Experimental results, both on regression and classification datasets, show that our method outperforms these already existing efficient variants of LLA, both in terms of the quality of the predictive distribution and in terms of total computational time.

The progression of communication in the Message Passing Interface (MPI) is not well defined, yet it is critical for application performance, particularly in achieving effective computation and communication overlap. The opaque nature of MPI progress poses significant challenges in advancing MPI within modern high-performance computing (HPC) practices. Firstly, the lack of clarity hinders the development of explicit guidelines for enhancing computation and communication overlap in applications. Secondly, it prevents MPI from seamlessly integrating with contemporary programming paradigms, such as task-based runtimes and event-driven programming. Thirdly, it limits the extension of MPI functionalities from the user space. In this paper, we examine the role of MPI progress by analyzing the implementation details of MPI messaging. We then generalize the asynchronous communication pattern and identify key factors influencing application performance. Based on this analysis, we propose a set of MPI extensions designed to enable users to explicitly construct and manage an efficient progress engine. We provide example codes to demonstrate the use of these proposed APIs in achieving improved performance, adapting MPI to task-based or event-driven programming styles, and constructing collective algorithms that rival the performance of native implementations. Our approach is compared to previous efforts in the field, highlighting its reduced complexity and increased effectiveness.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. Our code is available at \url{//github.com/wenqifan03/GraphRec-WWW19}

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

北京阿比特科技有限公司