亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is known that different categorial grammars have surface representation in a fragment of first order multiplicative linear logic (MLL1). We show that the fragment of interest is equivalent to the recently introduced extended tensor type calculus (ETTC). ETTC is a calculus of specific typed terms, which represent tuples of strings, more precisely bipartite graphs decorated with strings. Types are derived from linear logic formulas, and rules correspond to concrete operations on these string-labeled graphs, so that they can be conveniently visualized. This provides the above mentioned fragment of MLL1 that is relevant for language modeling not only with some alternative syntax and intuitive geometric representation, but also with an intrinsic deductive system, which has been absent. In this work we consider a non-trivial notationally enriched variation of the previously introduced {\bf ETTC}, which allows more concise and transparent computations. We present both a cut-free sequent calculus and a natural deduction formalism.

相關內容

We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble. Given the interatomic interaction model, the method makes decisions regarding the number of atoms and temperature at which to conduct simulations, and based on the collected data predicts the melting point along with the uncertainty, which can be systematically improved with more data. We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making to effectively reduce predictive uncertainty. To validate our approach, we compare the results of 20 melting point calculations from the literature to the results of our calculations, all conducted with same interatomic potentials. Remarkably, we observe significant deviations in about one-third of the cases, underscoring the need for accurate and reliable algorithms for materials property calculations.

Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that efficient tensor network simulations are likely possible under the $N_\text{out}\propto\sqrt{N}$ scaling of the number of surviving photons orange$N_\text{out}$ in the number of input photons $N$. We numerically verify this result using a tensor network algorithm with $U(1)$ symmetry, and overcome previous challenges due to the large local Hilbert space dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence for the complexity of tensor networks.

Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal $O(n \log n)$ sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using $L^p$-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of $L^p$-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the $L^p$-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph $G(n,d/n)$, where the previously known algorithms run in time $n^{O(\log d)}$ or applied only to large $d$. We refine these algorithmic bounds significantly, and develop fast $n^{1+o(1)}$ algorithms based on Glauber dynamics that apply to all $d$, throughout the uniqueness regime.

We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.

We investigate a family of approximate multi-step proximal point methods, accelerated by implicit linear discretizations of gradient flow. The resulting methods are multi-step proximal point methods, with similar computational cost in each update as the proximal point method. We explore several optimization methods where applying an approximate multistep proximal points method results in improved convergence behavior. We argue that this is the result of the lowering of truncation error in approximating gradient flow

We give an adequate, concrete, categorical-based model for Lambda-S, which is a typed version of a linear-algebraic lambda calculus, extended with measurements. Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi: to forbid duplication of variables, and to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a superposition constructor S such that a type A is considered as the base of a vector space while SA is its span. Our model considers S as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.

This work focuses on the conservation of quantities such as Hamiltonians, mass, and momentum when solution fields of partial differential equations are approximated with nonlinear parametrizations such as deep networks. The proposed approach builds on Neural Galerkin schemes that are based on the Dirac--Frenkel variational principle to train nonlinear parametrizations sequentially in time. We first show that only adding constraints that aim to conserve quantities in continuous time can be insufficient because the nonlinear dependence on the parameters implies that even quantities that are linear in the solution fields become nonlinear in the parameters and thus are challenging to discretize in time. Instead, we propose Neural Galerkin schemes that compute at each time step an explicit embedding onto the manifold of nonlinearly parametrized solution fields to guarantee conservation of quantities. The embeddings can be combined with standard explicit and implicit time integration schemes. Numerical experiments demonstrate that the proposed approach conserves quantities up to machine precision.

A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.

Bayesian cross-validation (CV) is a popular method for predictive model assessment that is simple to implement and broadly applicable. A wide range of CV schemes is available for time series applications, including generic leave-one-out (LOO) and K-fold methods, as well as specialized approaches intended to deal with serial dependence such as leave-future-out (LFO), h-block, and hv-block. Existing large-sample results show that both specialized and generic methods are applicable to models of serially-dependent data. However, large sample consistency results overlook the impact of sampling variability on accuracy in finite samples. Moreover, the accuracy of a CV scheme depends on many aspects of the procedure. We show that poor design choices can lead to elevated rates of adverse selection. In this paper, we consider the problem of identifying the regression component of an important class of models of data with serial dependence, autoregressions of order p with q exogenous regressors (ARX(p,q)), under the logarithmic scoring rule. We show that when serial dependence is present, scores computed using the joint (multivariate) density have lower variance and better model selection accuracy than the popular pointwise estimator. In addition, we present a detailed case study of the special case of ARX models with fixed autoregressive structure and variance. For this class, we derive the finite-sample distribution of the CV estimators and the model selection statistic. We conclude with recommendations for practitioners.

We introduce a method which provides accurate numerical solutions to fractional-in-time partial differential equations posed on $[0,T] \times \Omega$ with $\Omega \subset \mathbb{R}^d$ without the excessive memory requirements associated with the nonlocal fractional derivative operator. Our approach combines recent advances in the development and utilization of multivariate sparse spectral methods as well as fast methods for the computation of Gauss quadrature nodes with recursive non-classical methods for the Caputo fractional derivative of general fractional order $\alpha > 0$. An attractive feature of the method is that it has minimal theoretical overhead when using it on any domain $\Omega$ on which an orthogonal polynomial basis is already available. We discuss the memory requirements of the method, present several numerical experiments demonstrating the method's performance in solving time-fractional PDEs on intervals, triangles and disks and derive error bounds which suggest sensible convergence strategies. As an important model problem for this approach we consider a type of wave equation with time-fractional dampening related to acoustic waves in viscoelastic media with applications in the physics of medical ultrasound and outline future research steps required to use such methods for the reverse problem of image reconstruction from sensor data.

北京阿比特科技有限公司