Driver distraction is a principal cause of traffic accidents. In a study conducted by the National Highway Traffic Safety Administration, engaging in activities such as interacting with in-car menus, consuming food or beverages, or engaging in telephonic conversations while operating a vehicle can be significant sources of driver distraction. From this viewpoint, this paper introduces a novel method for detection of driver distraction using multi-view driver action images. The proposed method is a vision transformer-based framework with pose estimation and action inference, namely PoseViNet. The motivation for adding posture information is to enable the transformer to focus more on key features. As a result, the framework is more adept at identifying critical actions. The proposed framework is compared with various state-of-the-art models using SFD3 dataset representing 10 behaviors of drivers. It is found from the comparison that the PoseViNet outperforms these models. The proposed framework is also evaluated with the SynDD1 dataset representing 16 behaviors of driver. As a result, the PoseViNet achieves 97.55% validation accuracy and 90.92% testing accuracy with the challenging dataset.
Guidance for assemblable parts is a promising field for augmented reality. Augmented reality assembly guidance requires 6D object poses of target objects in real time. Especially in time-critical medical or industrial settings, continuous and markerless tracking of individual parts is essential to visualize instructions superimposed on or next to the target object parts. In this regard, occlusions by the user's hand or other objects and the complexity of different assembly states complicate robust and real-time markerless multi-object tracking. To address this problem, we present Graph-based Object Tracking (GBOT), a novel graph-based single-view RGB-D tracking approach. The real-time markerless multi-object tracking is initialized via 6D pose estimation and updates the graph-based assembly poses. The tracking through various assembly states is achieved by our novel multi-state assembly graph. We update the multi-state assembly graph by utilizing the relative poses of the individual assembly parts. Linking the individual objects in this graph enables more robust object tracking during the assembly process. For evaluation, we introduce a synthetic dataset of publicly available and 3D printable assembly assets as a benchmark for future work. Quantitative experiments in synthetic data and further qualitative study in real test data show that GBOT can outperform existing work towards enabling context-aware augmented reality assembly guidance. Dataset and code will be made publically available.
Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{//github.com/Namco0816/ProxyQA}.
In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.
Neural implicit representations have recently been demonstrated in many fields including Simultaneous Localization And Mapping (SLAM). Current neural SLAM can achieve ideal results in reconstructing bounded scenes, but this relies on the input of RGB-D images. Neural-based SLAM based only on RGB images is unable to reconstruct the scale of the scene accurately, and it also suffers from scale drift due to errors accumulated during tracking. To overcome these limitations, we present MoD-SLAM, a monocular dense mapping method that allows global pose optimization and 3D reconstruction in real-time in unbounded scenes. Optimizing scene reconstruction by monocular depth estimation and using loop closure detection to update camera pose enable detailed and precise reconstruction on large scenes. Compared to previous work, our approach is more robust, scalable and versatile. Our experiments demonstrate that MoD-SLAM has more excellent mapping performance than prior neural SLAM methods, especially in large borderless scenes.
We introduce an approach for 3D head avatar generation and editing with multi-modal conditioning based on a 3D Generative Adversarial Network (GAN) and a Latent Diffusion Model (LDM). 3D GANs can generate high-quality head avatars given a single or no condition. However, it is challenging to generate samples that adhere to multiple conditions of different modalities. On the other hand, LDMs excel at learning complex conditional distributions. To this end, we propose to exploit the conditioning capabilities of LDMs to enable multi-modal control over the latent space of a pre-trained 3D GAN. Our method can generate and edit 3D head avatars given a mixture of control signals such as RGB input, segmentation masks, and global attributes. This provides better control over the generation and editing of synthetic avatars both globally and locally. Experiments show that our proposed approach outperforms a solely GAN-based approach both qualitatively and quantitatively on generation and editing tasks. To the best of our knowledge, our approach is the first to introduce multi-modal conditioning to 3D avatar generation and editing. \\href{avatarmmc-sig24.github.io}{Project Page}
The minimal feature removal problem in the post-hoc explanation area aims to identify the minimal feature set (MFS). Prior studies using the greedy algorithm to calculate the minimal feature set lack the exploration of feature interactions under a monotonic assumption which cannot be satisfied in general scenarios. In order to address the above limitations, we propose a Cooperative Integrated Dynamic Refining method (CIDR) to efficiently discover minimal feature sets. Specifically, we design Cooperative Integrated Gradients (CIG) to detect interactions between features. By incorporating CIG and characteristics of the minimal feature set, we transform the minimal feature removal problem into a knapsack problem. Additionally, we devise an auxiliary Minimal Feature Refinement algorithm to determine the minimal feature set from numerous candidate sets. To the best of our knowledge, our work is the first to address the minimal feature removal problem in the field of natural language processing. Extensive experiments demonstrate that CIDR is capable of tracing representative minimal feature sets with improved interpretability across various models and datasets.
Recent advances in visual anomaly detection research have seen AUROC and AUPRO scores on public benchmark datasets such as MVTec and VisA converge towards perfect recall, giving the impression that these benchmarks are near-solved. However, high AUROC and AUPRO scores do not always reflect qualitative performance, which limits the validity of these metrics in real-world applications. We argue that the artificial ceiling imposed by the lack of an adequate evaluation metric restrains progression of the field, and it is crucial that we revisit the evaluation metrics used to rate our algorithms. In response, we introduce Per-IMage Overlap (PIMO), a novel metric that addresses the shortcomings of AUROC and AUPRO. PIMO retains the recall-based nature of the existing metrics but introduces two distinctions: the assignment of curves (and respective area under the curve) is per-image, and its X-axis relies solely on normal images. Measuring recall per image simplifies instance score indexing and is more robust to noisy annotations. As we show, it also accelerates computation and enables the usage of statistical tests to compare models. By imposing low tolerance for false positives on normal images, PIMO provides an enhanced model validation procedure and highlights performance variations across datasets. Our experiments demonstrate that PIMO offers practical advantages and nuanced performance insights that redefine anomaly detection benchmarks -- notably challenging the perception that MVTec AD and VisA datasets have been solved by contemporary models. Available on GitHub: //github.com/jpcbertoldo/aupimo.
Node Importance Estimation (NIE) is crucial for integrating external information into Large Language Models through Retriever-Augmented Generation. Traditional methods, focusing on static, single-graph characteristics, lack adaptability to new graphs and user-specific requirements. CADReN, our proposed method, addresses these limitations by introducing a Contextual Anchor (CA) mechanism. This approach enables the network to assess node importance relative to the CA, considering both structural and semantic features within Knowledge Graphs (KGs). Extensive experiments show that CADReN achieves better performance in cross-graph NIE task, with zero-shot prediction ability. CADReN is also proven to match the performance of previous models on single-graph NIE task. Additionally, we introduce and opensource two new datasets, RIC200 and WK1K, specifically designed for cross-graph NIE research, providing a valuable resource for future developments in this domain.
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.