While many Machine Learning methods were developed or transposed on Riemannian manifolds to tackle data with known non Euclidean geometry, Optimal Transport (OT) methods on such spaces have not received much attention. The main OT tool on these spaces is the Wasserstein distance which suffers from a heavy computational burden. On Euclidean spaces, a popular alternative is the Sliced-Wasserstein distance, which leverages a closed-form solution of the Wasserstein distance in one dimension, but which is not readily available on manifolds. In this work, we derive general constructions of Sliced-Wasserstein distances on Cartan-Hadamard manifolds, Riemannian manifolds with non-positive curvature, which include among others Hyperbolic spaces or the space of Symmetric Positive Definite matrices. Then, we propose different applications. Additionally, we derive non-parametric schemes to minimize these new distances by approximating their Wasserstein gradient flows.
Our study provides evidence that CNNs struggle to effectively extract orientation features. We show that the use of Complex Structure Tensor, which contains compact orientation features with certainties, as input to CNNs consistently improves identification accuracy compared to using grayscale inputs alone. Experiments also demonstrated that our inputs, which were provided by mini complex conv-nets, combined with reduced CNN sizes, outperformed full-fledged, prevailing CNN architectures. This suggests that the upfront use of orientation features in CNNs, a strategy seen in mammalian vision, not only mitigates their limitations but also enhances their explainability and relevance to thin-clients. Experiments were done on publicly available data sets comprising periocular images for biometric identification and verification (Close and Open World) using 6 State of the Art CNN architectures. We reduced SOA Equal Error Rate (EER) on the PolyU dataset by 5-26% depending on data and scenario.
The input language for today's CHC solvers are commonly the standard SMT-LIB format, borrowed from SMT solvers, and the Prolog format that stems from Constraint-Logic Programming (CLP). This paper presents a new front-end of the Eldarica CHC solver that allows inputs in the Prolog language. We give a formal translation of a subset of Prolog into the SMT-LIB commands. Our initial experiments show the effectiveness of the approach and the potential benefits to both the CHC solving and CLP communities.
This paper explores SynTOD, a new synthetic data generation approach for developing end-to-end Task-Oriented Dialogue (TOD) Systems capable of handling complex tasks such as intent classification, slot filling, conversational question-answering, and retrieval-augmented response generation, without relying on crowdsourcing or real-world data. SynTOD utilizes a state transition graph to define the desired behavior of a TOD system and generates diverse, structured conversations through random walks and response simulation using large language models (LLMs). In our experiments, using graph-guided response simulations leads to significant improvements in intent classification, slot filling and response relevance compared to naive single-prompt simulated conversations. We also investigate the end-to-end TOD effectiveness of different base and instruction-tuned LLMs, with and without the constructed synthetic conversations. Finally, we explore how various LLMs can evaluate responses in a TOD system and how well they are correlated with human judgments. Our findings pave the path towards quick development and evaluation of domain-specific TOD systems. We release our datasets, models, and code for research purposes.
Existence constraints were defined in the Relational Data Model, but, unfortunately, are not provided by any Relational Database Management System, except for their NOT NULL particular case. Our (Elementary) Mathematical Data Model extended them to function products and introduced their dual non-existence constraints. MatBase, an intelligent data and knowledge base management system prototype based on both these data models, not only provides existence and non-existence constraints, but also automatically generates code for their enforcement. This paper presents and discusses the algorithms used by MatBase to enforce these types of constraints.
We propose a method to guide Large Language Models (LLMs) in generating structured content adhering to specific conventions without fine-tuning. By utilizing coroutine-based content generation constraints through a pre-agreed context-free grammar (CFG), LLMs are directed during decoding to produce formal language compliant outputs. This enhances stability and consistency in generating target data structures, types, or instructions, reducing application development complexities. Experimentally, error rates of GPT-2 and Gemma exceed 95% for DSLs longer than 36 and 282 tokens, respectively. We introduce YieldLang, a coroutine-based DSL generation framework, and evaluate it with LLMs on various tasks including JSON and Mermaid flowchart generation. Compared to benchmarks, our approach improves accuracy by 1.09 to 11.6 times, with LLMs requiring only about 16.5% of the samples to generate JSON effectively. This enhances usability of LLM-generated content for computer programs.
Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~\footnote{Audio samples are available at \url{//ViT-TTS.github.io/.}}
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including data augmentation and synthetic data generation. This work explores the use of LLMs to generate rich textual descriptions for motion sequences, encompassing both actions and walking patterns. We leverage the expressive power of LLMs to align motion representations with high-level linguistic cues, addressing two distinct tasks: action recognition and retrieval of walking sequences based on appearance attributes. For action recognition, we employ LLMs to generate textual descriptions of actions in the BABEL-60 dataset, facilitating the alignment of motion sequences with linguistic representations. In the domain of gait analysis, we investigate the impact of appearance attributes on walking patterns by generating textual descriptions of motion sequences from the DenseGait dataset using LLMs. These descriptions capture subtle variations in walking styles influenced by factors such as clothing choices and footwear. Our approach demonstrates the potential of LLMs in augmenting structured motion attributes and aligning multi-modal representations. The findings contribute to the advancement of comprehensive motion understanding and open up new avenues for leveraging LLMs in multi-modal alignment and data augmentation for motion analysis. We make the code publicly available at //github.com/Radu1999/WalkAndText
Entity alignment (EA) aims to find equivalent entities between two Knowledge Graphs. Existing embedding-based EA methods usually encode entities as embeddings, triples as embeddings' constraint and learn to align the embeddings. The structural and side information are usually utilized via embedding propagation, aggregation or interaction. However, the details of the underlying logical inference steps among the alignment process are usually omitted, resulting in inadequate inference process. In this paper, we introduce P-NAL, an entity alignment method that captures two types of logical inference paths with Non-Axiomatic Logic (NAL). Type 1 is the bridge-like inference path between to-be-aligned entity pairs, consisting of two relation/attribute triples and a similarity sentence between the other two entities. Type 2 links the entity pair by their embeddings. P-NAL iteratively aligns entities and relations by integrating the conclusions of the inference paths. Moreover, our method is logically interpretable and extensible due to the expressiveness of NAL. Our proposed method is suitable for various EA settings. Experimental results show that our method outperforms state-of-the-art methods in terms of Hits@1, achieving 0.98+ on all three datasets of DBP15K with both supervised and unsupervised settings. To our knowledge, we present the first in-depth analysis of entity alignment's basic principles from a unified logical perspective.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.