亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence. Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps separate the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike the existing methods, our proposed approach eliminates the need to learn causal representation from the data and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings, in which the treatment feature is based on human perception rather than is assumed to be fixed given the treatment object. We conduct simulation studies using the generated text data with an open-source LLM, Llama3, to illustrate the advantages of our estimator over the state-of-the-art causal representation learning algorithms.

相關內容

In this paper, we propose an innovative approach to thoroughly explore dataset features that introduce bias in downstream machine-learning tasks. Depending on the data format, we use different techniques to map instances into a similarity feature space. Our method's ability to adjust the resolution of pairwise similarity provides clear insights into the relationship between the dataset classification complexity and model fairness. Experimental results confirm the promising applicability of the similarity network in promoting fair models. Moreover, leveraging our methodology not only seems promising in providing a fair downstream task such as classification, it also performs well in imputation and augmentation of the dataset satisfying the fairness criteria such as demographic parity and imbalanced classes.

This paper argues for the strategic treatment of artificial intelligence as a key industry within broader industrial policy framework of Pakistan, underscoring the importance of aligning it with national goals such as economic resilience and preservation of autonomy. The paper starts with defining industrial policy as a set of targeted government interventions to shape specific sectors for strategic outcomes and argues for its application to AI in Pakistan due to its huge potential, the risks of unregulated adoption, and prevailing market inefficiencies. The paper conceptualizes AI as a layered ecosystem, comprising foundational infrastructure, core computing, development platforms, and service and product layers, supported by education, government policy, and research and development. The analysis highlights that AI sector of Pakistan is predominantly service oriented, with limited product innovation and dependence on foreign technologies, posing risks to economic independence, national security, and employment. To address these challenges, the paper recommends educational reforms, support for local AI product development, initiatives for indigenous cloud and hardware capabilities, and public-private collaborations on foundational models. Additionally, it advocates for public procurement policies and infrastructure incentives to foster local solutions and reduce reliance on foreign providers. This strategy aims to position Pakistan as a competitive, autonomous player in the global AI ecosystem.

This paper introduces an efficient sub-model ensemble framework aimed at enhancing the interpretability of medical deep learning models, thus increasing their clinical applicability. By generating uncertainty maps, this framework enables end-users to evaluate the reliability of model outputs. We developed a strategy to develop diverse models from a single well-trained checkpoint, facilitating the training of a model family. This involves producing multiple outputs from a single input, fusing them into a final output, and estimating uncertainty based on output disagreements. Implemented using U-Net and UNETR models for segmentation and synthesis tasks, this approach was tested on CT body segmentation and MR-CT synthesis datasets. It achieved a mean Dice coefficient of 0.814 in segmentation and a Mean Absolute Error of 88.17 HU in synthesis, improved from 89.43 HU by pruning. Additionally, the framework was evaluated under corruption and undersampling, maintaining correlation between uncertainty and error, which highlights its robustness. These results suggest that the proposed approach not only maintains the performance of well-trained models but also enhances interpretability through effective uncertainty estimation, applicable to both convolutional and transformer models in a range of imaging tasks.

Misclassification in binary outcomes is not uncommon and statistical methods to investigate its impact on policy-driving study results are lacking. While misclassifying binary outcomes is a statistically ubiquitous phenomena, we focus on misclassification in a public health application: vaccinations. One such study design in public health that addresses policy is the cluster controlled randomized trial (CCRT). A CCRT that measures the impact of a novel behavioral intervention on increasing vaccine uptake can be severely biased when the supporting data are incomplete vaccination records. In particular, these vaccine records more often may be prone to negative misclassification, that is, a clinic's record of an individual patient's vaccination status may be unvaccinated when, in reality, this patient was vaccinated outside of the clinic. With large nation-wide endeavors to encourage vaccinations without a gold-standard vaccine record system, sensitivity analyses that incorporate misclassification rates are promising for robust inference. In this work we introduce a novel extension of Bayesian logistic regression where we perturb the clinic size and vaccination count with random draws from expert-elicited prior distributions. These prior distributions represent the misclassification rates for each clinic that stochastically add unvaccinated counts to the observed vaccinated counts. These prior distributions are assigned for each clinic (the first level in a group-level randomized trial). We demonstrate this method with a data application from a CCRT evaluating the influence of a behavioral intervention on vaccination uptake among U.S. veterans. A simulation study is carried out demonstrating its estimation properties.

Nowadays, neural networks are commonly used to solve various problems. Unfortunately, despite their effectiveness, they are often perceived as black boxes capable of providing answers without explaining their decisions, which raises numerous ethical and legal concerns. Fortunately, the field of explainability helps users understand these results. This aspect of machine learning allows users to grasp the decision-making process of a model and verify the relevance of its outcomes. In this article, we focus on the learning process carried out by a ``time distributed`` convRNN, which performs anomaly detection from video data.

To increase social bonding with interlocutors, humans naturally acquire the ability to respond appropriately in a given situation by considering which conversational skill is most suitable for the response - a process we call skill-of-mind. For large language model (LLM)-based conversational agents, planning appropriate conversational skills, as humans do, is challenging due to the complexity of social dialogue, especially in interactive scenarios. To address this, we propose a skill-of-mind-annotated conversation dataset, named Multifaceted Skill-of-Mind, which includes multi-turn and multifaceted conversational skills across various interactive scenarios (e.g., long-term, counseling, task-oriented), grounded in diverse social contexts (e.g., demographics, persona, rules of thumb). This dataset consists of roughly 100K conversations. Using this dataset, we introduce a new family of skill-of-mind-infused LLMs, named Thanos, with model sizes of 1B, 3B, and 8B parameters. With extensive experiments, these models successfully demonstrate the skill-of-mind process and exhibit strong generalizability in inferring multifaceted skills across a variety of domains. Moreover, we show that Thanos significantly enhances the quality of responses generated by LLM-based conversational agents and promotes prosocial behavior in human evaluations.

Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司