亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in data space. In this work, we explore an optimal transport-based distributional robustness framework on model spaces. Specifically, we examine a model distribution in a Wasserstein ball of a given center model distribution that maximizes the loss. We have developed theories that allow us to learn the optimal robust center model distribution. Interestingly, through our developed theories, we can flexibly incorporate the concept of sharpness awareness into training a single model, ensemble models, and Bayesian Neural Networks by considering specific forms of the center model distribution, such as a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that sharpness-aware minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be viewed as a probabilistic extension of SAM. We conduct extensive experiments to demonstrate the usefulness of our framework in the aforementioned settings, and the results show remarkable improvements in our approaches to the baselines.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 查準率/準確率 · 異方差 · Principle · 講稿 ·
2023 年 7 月 28 日

Collecting traffic volume data is a vital but costly piece of transportation engineering and urban planning. In recent years, efforts have been made to estimate traffic volumes using passively collected probe data that contain spatiotemporal information. However, the feasibility and underlying principles of traffic volume estimation based on probe data without pseudonyms have not been examined thoroughly. In this paper, we present the exact distribution of the estimated probe traffic volume passing through a road segment based on probe point data without trajectory reconstruction. The distribution of the estimated probe traffic volume can exhibit multimodality, without necessarily being line-symmetric with respect to the actual probe traffic volume. As more probes are present, the distribution approaches a normal distribution. The conformity of the distribution was demonstrated through numerical and microscopic traffic simulations. Theoretically, with a well-calibrated probe penetration rate, traffic volumes in a road segment can be estimated using probe point data with high precision even at a low probe penetration rate. Furthermore, sometimes there is a local optimum cordon length that maximises estimation precision. The theoretical variance of the estimated probe traffic volume can address heteroscedasticity in the modelling of traffic volume estimates.

Confounding is a significant obstacle to unbiased estimation of causal effects from observational data. For settings with high-dimensional covariates -- such as text data, genomics, or the behavioral social sciences -- researchers have proposed methods to adjust for confounding by adapting machine learning methods to the goal of causal estimation. However, empirical evaluation of these adjustment methods has been challenging and limited. In this work, we build on a promising empirical evaluation strategy that simplifies evaluation design and uses real data: subsampling randomized controlled trials (RCTs) to create confounded observational datasets while using the average causal effects from the RCTs as ground-truth. We contribute a new sampling algorithm, which we call RCT rejection sampling, and provide theoretical guarantees that causal identification holds in the observational data to allow for valid comparisons to the ground-truth RCT. Using synthetic data, we show our algorithm indeed results in low bias when oracle estimators are evaluated on the confounded samples, which is not always the case for a previously proposed algorithm. In addition to this identification result, we highlight several finite data considerations for evaluation designers who plan to use RCT rejection sampling on their own datasets. As a proof of concept, we implement an example evaluation pipeline and walk through these finite data considerations with a novel, real-world RCT -- which we release publicly -- consisting of approximately 70k observations and text data as high-dimensional covariates. Together, these contributions build towards a broader agenda of improved empirical evaluation for causal estimation.

With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to explain models. Post hoc explanation methods explain the behaviour of complex black-box models by highlighting features that are critical to model predictions; however, prior work has shown that these explanations may not be faithful, and even more concerning is our inability to verify them. Specifically, it is nontrivial to evaluate if a given attribution is correct with respect to the underlying model. Inherently interpretable models, on the other hand, circumvent these issues by explicitly encoding explanations into model architecture, meaning their explanations are naturally faithful and verifiable, but they often exhibit poor predictive performance due to their limited expressive power. In this work, we aim to bridge the gap between the aforementioned strategies by proposing Verifiability Tuning (VerT), a method that transforms black-box models into models that naturally yield faithful and verifiable feature attributions. We begin by introducing a formal theoretical framework to understand verifiability and show that attributions produced by standard models cannot be verified. We then leverage this framework to propose a method to build verifiable models and feature attributions out of fully trained black-box models. Finally, we perform extensive experiments on semi-synthetic and real-world datasets, and show that VerT produces models that (1) yield explanations that are correct and verifiable and (2) are faithful to the original black-box models they are meant to explain.

Gait, the manner of walking, has been proven to be a reliable biometric with uses in surveillance, marketing and security. A promising new direction for the field is training gait recognition systems without explicit human annotations, through self-supervised learning approaches. Such methods are heavily reliant on strong augmentations for the same walking sequence to induce more data variability and to simulate additional walking variations. Current data augmentation schemes are heuristic and cannot provide the necessary data variation as they are only able to provide simple temporal and spatial distortions. In this work, we propose GaitMorph, a novel method to modify the walking variation for an input gait sequence. Our method entails the training of a high-compression model for gait skeleton sequences that leverages unlabelled data to construct a discrete and interpretable latent space, which preserves identity-related features. Furthermore, we propose a method based on optimal transport theory to learn latent transport maps on the discrete codebook that morph gait sequences between variations. We perform extensive experiments and show that our method is suitable to synthesize additional views for an input sequence.

Out-of-distribution (OOD) generalization is a challenging machine learning problem yet highly desirable in many high-stake applications. Existing methods suffer from overly pessimistic modeling with low generalization confidence. As generalizing to arbitrary test distributions is impossible, we hypothesize that further structure on the topology of distributions is crucial in developing strong OOD resilience. To this end, we propose topology-aware robust optimization (TRO) that seamlessly integrates distributional topology in a principled optimization framework. More specifically, TRO solves two optimization objectives: (1) Topology Learning which explores data manifold to uncover the distributional topology; (2) Learning on Topology which exploits the topology to constrain robust optimization for tightly-bounded generalization risks. We theoretically demonstrate the effectiveness of our approach and empirically show that it significantly outperforms the state of the arts in a wide range of tasks including classification, regression, and semantic segmentation. Moreover, we empirically find the data-driven distributional topology is consistent with domain knowledge, enhancing the explainability of our approach.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised settings and 7% $\sim$ 13% under semi-supervised settings.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

北京阿比特科技有限公司