亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose the first approach to automatically and jointly synthesize both the synchronous 3D conversational body and hand gestures, as well as 3D face and head animations, of a virtual character from speech input. Our algorithm uses a CNN architecture that leverages the inherent correlation between facial expression and hand gestures. Synthesis of conversational body gestures is a multi-modal problem since many similar gestures can plausibly accompany the same input speech. To synthesize plausible body gestures in this setting, we train a Generative Adversarial Network (GAN) based model that measures the plausibility of the generated sequences of 3D body motion when paired with the input audio features. We also contribute a new way to create a large corpus of more than 33 hours of annotated body, hand, and face data from in-the-wild videos of talking people. To this end, we apply state-of-the-art monocular approaches for 3D body and hand pose estimation as well as dense 3D face performance capture to the video corpus. In this way, we can train on orders of magnitude more data than previous algorithms that resort to complex in-studio motion capture solutions, and thereby train more expressive synthesis algorithms. Our experiments and user study show the state-of-the-art quality of our speech-synthesized full 3D character animations.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

We propose a novel learned deep prior of body motion for 3D hand shape synthesis and estimation in the domain of conversational gestures. Our model builds upon the insight that body motion and hand gestures are strongly correlated in non-verbal communication settings. We formulate the learning of this prior as a prediction task of 3D hand shape over time given body motion input alone. Trained with 3D pose estimations obtained from a large-scale dataset of internet videos, our hand prediction model produces convincing 3D hand gestures given only the 3D motion of the speaker's arms as input. We demonstrate the efficacy of our method on hand gesture synthesis from body motion input, and as a strong body prior for single-view image-based 3D hand pose estimation. We demonstrate that our method outperforms previous state-of-the-art approaches and can generalize beyond the monologue-based training data to multi-person conversations. Video results are available at //people.eecs.berkeley.edu/~evonne_ng/projects/body2hands/.

We introduce a non-parametric approach for infinite video texture synthesis using a representation learned via contrastive learning. We take inspiration from Video Textures, which showed that plausible new videos could be generated from a single one by stitching its frames together in a novel yet consistent order. This classic work, however, was constrained by its use of hand-designed distance metrics, limiting its use to simple, repetitive videos. We draw on recent techniques from self-supervised learning to learn this distance metric, allowing us to compare frames in a manner that scales to more challenging dynamics, and to condition on other data, such as audio. We learn representations for video frames and frame-to-frame transition probabilities by fitting a video-specific model trained using contrastive learning. To synthesize a texture, we randomly sample frames with high transition probabilities to generate diverse temporally smooth videos with novel sequences and transitions. The model naturally extends to an audio-conditioned setting without requiring any finetuning. Our model outperforms baselines on human perceptual scores, can handle a diverse range of input videos, and can combine semantic and audio-visual cues in order to synthesize videos that synchronize well with an audio signal.

Conversational Machine Comprehension (CMC) is a research track in conversational AI which expects the machine to understand an open-domain text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering, multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models like BERT and the introduction of large-scale conversational datasets like CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review, therefore, is a first-of-its-kind attempt at providing a holistic overview of CMC, with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. It focuses on synthesizing a generic framework for CMC models, rather than describing the models individually. The review is intended to serve as a compendium for future researchers in this domain.

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent instance. This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on. In this work, we study the problem of learning to master not one but multiple sequential-decision tasks at once. A general issue in multi-task learning is that a balance must be found between the needs of multiple tasks competing for the limited resources of a single learning system. Many learning algorithms can get distracted by certain tasks in the set of tasks to solve. Such tasks appear more salient to the learning process, for instance because of the density or magnitude of the in-task rewards. This causes the algorithm to focus on those salient tasks at the expense of generality. We propose to automatically adapt the contribution of each task to the agent's updates, so that all tasks have a similar impact on the learning dynamics. This resulted in state of the art performance on learning to play all games in a set of 57 diverse Atari games. Excitingly, our method learned a single trained policy - with a single set of weights - that exceeds median human performance. To our knowledge, this was the first time a single agent surpassed human-level performance on this multi-task domain. The same approach also demonstrated state of the art performance on a set of 30 tasks in the 3D reinforcement learning platform DeepMind Lab.

Visual Question answering is a challenging problem requiring a combination of concepts from Computer Vision and Natural Language Processing. Most existing approaches use a two streams strategy, computing image and question features that are consequently merged using a variety of techniques. Nonetheless, very few rely on higher level image representations, which allow to capture semantic and spatial relationships. In this paper, we propose a novel graph-based approach for Visual Question Answering. Our method combines a graph learner module, which learns a question specific graph representation of the input image, with the recent concept of graph convolutions, aiming to learn image representations that capture question specific interactions. We test our approach on the VQA v2 dataset using a simple baseline architecture enhanced by the proposed graph learner module. We obtain state of the art results with 66.18% accuracy and demonstrate the interpretability of the proposed method.

In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.

In this paper, we propose a novel feature learning framework for video person re-identification (re-ID). The proposed framework largely aims to exploit the adequate temporal information of video sequences and tackle the poor spatial alignment of moving pedestrians. More specifically, for exploiting the temporal information, we design a temporal residual learning (TRL) module to simultaneously extract the generic and specific features of consecutive frames. The TRL module is equipped with two bi-directional LSTM (BiLSTM), which are respectively responsible to describe a moving person in different aspects, providing complementary information for better feature representations. To deal with the poor spatial alignment in video re-ID datasets, we propose a spatial-temporal transformer network (ST^2N) module. Transformation parameters in the ST^2N module are learned by leveraging the high-level semantic information of the current frame as well as the temporal context knowledge from other frames. The proposed ST^2N module with less learnable parameters allows effective person alignments under significant appearance changes. Extensive experimental results on the large-scale MARS, PRID2011, ILIDS-VID and SDU-VID datasets demonstrate that the proposed method achieves consistently superior performance and outperforms most of the very recent state-of-the-art methods.

This paper aims at developing a faster and a more accurate solution to the amodal 3D object detection problem for indoor scenes. It is achieved through a novel neural network that takes a pair of RGB-D images as the input and delivers oriented 3D bounding boxes as the output. The network, named 3D-SSD, composed of two parts: hierarchical feature fusion and multi-layer prediction. The hierarchical feature fusion combines appearance and geometric features from RGB-D images while the multi-layer prediction utilizes multi-scale features for object detection. As a result, the network can exploit 2.5D representations in a synergetic way to improve the accuracy and efficiency. The issue of object sizes is addressed by attaching a set of 3D anchor boxes with varying sizes to every location of the prediction layers. At the end stage, the category scores for 3D anchor boxes are generated with adjusted positions, sizes and orientations respectively, leading to the final detections using non-maximum suppression. In the training phase, the positive samples are identified with the aid of 2D ground truth to avoid the noisy estimation of depth from raw data, which guide to a better converged model. Experiments performed on the challenging SUN RGB-D dataset show that our algorithm outperforms the state-of-the-art Deep Sliding Shape by 10.2% mAP and 88x faster. Further, experiments also suggest our approach achieves comparable accuracy and is 386x faster than the state-of-art method on the NYUv2 dataset even with a smaller input image size.

北京阿比特科技有限公司