Detecting the presence of project management anti-patterns (AP) currently requires experts on the matter and is an expensive endeavor. Worse, experts may introduce their individual subjectivity or bias. Using the Fire Drill AP, we first introduce a novel way to translate descriptions into detectable AP that are comprised of arbitrary metrics and events such as logged time or maintenance activities, which are mined from the underlying source code or issue-tracking data, thus making the description objective as it becomes data-based. Secondly, we demonstrate a novel method to quantify and score the deviations of real-world projects to data-based AP descriptions. Using fifteen real-world projects that exhibit a Fire Drill to some degree, we show how to further enhance the translated AP. The ground truth in these projects was extracted from two individual experts and consensus was found between them. We introduce a novel method called automatic calibration, that optimizes a pattern such that only necessary and important scores remain that suffice to confidently detect the degree to which the AP is present. Without automatic calibration, the proposed patterns show only weak potential for detecting the presence. Enriching the AP with data from real-world projects significantly improves the potential. We also introduce a no-pattern approach that exploits the ground truth for establishing a new, quantitative understanding of the phenomenon, as well as for finding gray-/black-box predictive models. We conclude that the presence detection and severity assessment of the Fire Drill anti-pattern, as well as some of its related and similar patterns, is certainly possible using some of the presented approaches.
Object tracking (OT) aims to estimate the positions of target objects in a video sequence. Depending on whether the initial states of target objects are specified by provided annotations in the first frame or the categories, OT could be classified as instance tracking (e.g., SOT and VOS) and category tracking (e.g., MOT, MOTS, and VIS) tasks. Combing the advantages of the best practices developed in both communities, we propose a novel tracking-with-detection paradigm, where tracking supplements appearance priors for detection and detection provides tracking with candidate bounding boxes for association. Equipped with such a design, a unified tracking model, OmniTracker, is further presented to resolve all the tracking tasks with a fully shared network architecture, model weights, and inference pipeline. Extensive experiments on 7 tracking datasets, including LaSOT, TrackingNet, DAVIS16-17, MOT17, MOTS20, and YTVIS19, demonstrate that OmniTracker achieves on-par or even better results than both task-specific and unified tracking models.
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift. Specifically, UDA methods try to align the source and target representations to improve the generalization on the target domain. Further, UDA methods work under the assumption that the source data is accessible during the adaptation process. However, in real-world scenarios, the labelled source data is often restricted due to privacy regulations, data transmission constraints, or proprietary data concerns. The Source-Free Domain Adaptation (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data. In this paper, we explore the SFDA setting for the task of adaptive object detection. To this end, we propose a novel training strategy for adapting a source-trained object detector to the target domain without source data. More precisely, we design a novel contrastive loss to enhance the target representations by exploiting the objects relations for a given target domain input. These object instance relations are modelled using an Instance Relation Graph (IRG) network, which are then used to guide the contrastive representation learning. In addition, we utilize a student-teacher based knowledge distillation strategy to avoid overfitting to the noisy pseudo-labels generated by the source-trained model. Extensive experiments on multiple object detection benchmark datasets show that the proposed approach is able to efficiently adapt source-trained object detectors to the target domain, outperforming previous state-of-the-art domain adaptive detection methods. Code and models are provided in \href{//viudomain.github.io/irg-sfda-web/}{//viudomain.github.io/irg-sfda-web/}.
Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at //github.com/LeeDongYeun/FixNoise.
AI-based monitoring has become crucial for cloud-based services due to its scale. A common approach to AI-based monitoring is to detect causal relationships among service components and build a causal graph. Availability of domain information makes cloud systems even better suited for such causal detection approaches. In modern cloud systems, however, auto-scalers dynamically change the number of microservice instances, and a load-balancer manages the load on each instance. This poses a challenge for off-the-shelf causal structure detection techniques as they neither incorporate the system architectural domain information nor provide a way to model distributed compute across varying numbers of service instances. To address this, we develop CausIL, which detects a causal structure among service metrics by considering compute distributed across dynamic instances and incorporating domain knowledge derived from system architecture. Towards the application in cloud systems, CausIL estimates a causal graph using instance-specific variations in performance metrics, modeling multiple instances of a service as independent, conditional on system assumptions. Simulation study shows the efficacy of CausIL over baselines by improving graph estimation accuracy by ~25% as measured by Structural Hamming Distance whereas the real-world dataset demonstrates CausIL's applicability in deployment settings.
We used two multimodal models for continuous valence-arousal recognition using visual, audio, and linguistic information. The first model is the same as we used in ABAW2 and ABAW3, which employs the leader-follower attention. The second model has the same architecture for spatial and temporal encoding. As for the fusion block, it employs a compact and straightforward channel attention, borrowed from the End2You toolkit. Unlike our previous attempts that use Vggish feature directly as the audio feature, this time we feed the pre-trained VGG model using logmel-spectrogram and finetune it during the training. To make full use of the data and alleviate over-fitting, cross-validation is carried out. The fold with the highest concordance correlation coefficient is selected for submission. The code is to be available at //github.com/sucv/ABAW5.
In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity. To this intent, we provide the MuscleMap136 dataset featuring >15K video clips with 136 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine. We further complement the main MuscleMap136 dataset, which specifically targets physical exercise, with Muscle-UCF90 and Muscle-HMDB41, which are new variants of the well-known activity recognition benchmarks extended with AMGE annotations. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a transformer-based model with cross-modal multi-label knowledge distillation and surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The datasets and code will be publicly available at //github.com/KPeng9510/MuscleMap.
Currently, there is a significant amount of research being conducted in the field of artificial intelligence to improve the explainability and interpretability of deep learning models. It is found that if end-users understand the reason for the production of some output, it is easier to trust the system. Recommender systems are one example of systems that great efforts have been conducted to make their output more explainable. One method for producing a more explainable output is using counterfactual reasoning, which involves altering minimal features to generate a counterfactual item that results in changing the output of the system. This process allows the identification of input features that have a significant impact on the desired output, leading to effective explanations. In this paper, we present a method for generating counterfactual explanations for both tabular and textual features. We evaluated the performance of our proposed method on three real-world datasets and demonstrated a +5\% improvement on finding effective features (based on model-based measures) compared to the baseline method.
Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.