亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The expanding application of Artificial Intelligence (AI) in scientific fields presents unprecedented opportunities for discovery and innovation. However, this growth is not without risks. AI models in science, if misused, can amplify risks like creation of harmful substances, or circumvention of established regulations. In this study, we aim to raise awareness of the dangers of AI misuse in science, and call for responsible AI development and use in this domain. We first itemize the risks posed by AI in scientific contexts, then demonstrate the risks by highlighting real-world examples of misuse in chemical science. These instances underscore the need for effective risk management strategies. In response, we propose a system called SciGuard to control misuse risks for AI models in science. We also propose a red-teaming benchmark SciMT-Safety to assess the safety of different systems. Our proposed SciGuard shows the least harmful impact in the assessment without compromising performance in benign tests. Finally, we highlight the need for a multidisciplinary and collaborative effort to ensure the safe and ethical use of AI models in science. We hope that our study can spark productive discussions on using AI ethically in science among researchers, practitioners, policymakers, and the public, to maximize benefits and minimize the risks of misuse.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article provides theoretical guarantees by exploring the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. We then deduce that in a very general regression setting with overfitting algorithms, attacks may have a high probability of success. Finally, we investigate several situations for which we provide bounds on this quantity of interest. Our results enable us to deduce the accuracy of potential attacks based on the number of samples and other structural parameters of learning models. In certain instances, these parameters can be directly estimated from the dataset.

Data generation is a data augmentation technique for enhancing the generalization ability for skeleton-based human action recognition. Most existing data generation methods face challenges to ensure the temporal consistency of the dynamic information for action. In addition, the data generated by these methods lack diversity when only a few training samples are available. To solve those problems, We propose a novel active generative network (AGN), which can adaptively learn various action categories by motion style transfer to generate new actions when the data for a particular action is only a single sample or few samples. The AGN consists of an action generation network and an uncertainty metric network. The former, with ST-GCN as the Backbone, can implicitly learn the morphological features of the target action while preserving the category features of the source action. The latter guides generating actions. Specifically, an action recognition model generates prediction vectors for each action, which is then scored using an uncertainty metric. Finally, UMN provides the uncertainty sampling basis for the generated actions.

Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: \url{//github.com/GAIR-NLP/scaleeval}.

Since the introduction of DeepMimic [Peng et al. 2018], subsequent research has focused on expanding the repertoire of simulated motions across various scenarios. In this study, we propose an alternative approach for this goal, a deep reinforcement learning method based on the simulation of a single-rigid-body character. Using the centroidal dynamics model (CDM) to express the full-body character as a single rigid body (SRB) and training a policy to track a reference motion, we can obtain a policy that is capable of adapting to various unobserved environmental changes and controller transitions without requiring any additional learning. Due to the reduced dimension of state and action space, the learning process is sample-efficient. The final full-body motion is kinematically generated in a physically plausible way, based on the state of the simulated SRB character. The SRB simulation is formulated as a quadratic programming (QP) problem, and the policy outputs an action that allows the SRB character to follow the reference motion. We demonstrate that our policy, efficiently trained within 30 minutes on an ultraportable laptop, has the ability to cope with environments that have not been experienced during learning, such as running on uneven terrain or pushing a box, and transitions between learned policies, without any additional learning.

Numerical difference computation is one of the cores and indispensable in the modern digital era. Tao general difference (TGD) is a novel theory and approach to difference computation for discrete sequences and arrays in multidimensional space. Built on the solid theoretical foundation of the general difference in a finite interval, the TGD operators demonstrate exceptional signal processing capabilities in real-world applications. A novel smoothness property of a sequence is defined on the first- and second TGD. This property is used to denoise one-dimensional signals, where the noise is the non-smooth points in the sequence. Meanwhile, the center of the gradient in a finite interval can be accurately location via TGD calculation. This solves a traditional challenge in computer vision, which is the precise localization of image edges with noise robustness. Furthermore, the power of TGD operators extends to spatio-temporal edge detection in three-dimensional arrays, enabling the identification of kinetic edges in video data. These diverse applications highlight the properties of TGD in discrete domain and the significant promise of TGD for the computation across signal processing, image analysis, and video analytic.

We present a numerical discretisation of the coupled moment systems, previously introduced in Dahm and Helzel, which approximate the kinetic multi-scale model by Helzel and Tzavaras for sedimentation in suspensions of rod-like particles for a two-dimensional flow problem and a shear flow problem. We use a splitting ansatz which, during each time step, separately computes the update of the macroscopic flow equation and of the moment system. The proof of the hyperbolicity of the moment systems in \cite{Dahm} suggests solving the moment systems with standard numerical methods for hyperbolic problems, like LeVeque's Wave Propagation Algorithm \cite{LeV}. The number of moment equations used in the hyperbolic moment system can be adapted to locally varying flow features. An error analysis is proposed, which compares the approximation with $2N+1$ moment equations to an approximation with $2N+3$ moment equations. This analysis suggests an error indicator which can be computed from the numerical approximation of the moment system with $2N+1$ moment equations. In order to use moment approximations with a different number of moment equations in different parts of the computational domain, we consider an interface coupling of moment systems with different resolution. Finally, we derive a conservative high-resolution Wave Propagation Algorithm for solving moment systems with different numbers of moment equations.

Hyperspectral Imaging (HSI) is used in a wide range of applications such as remote sensing, yet the transmission of the HS images by communication data links becomes challenging due to the large number of spectral bands that the HS images contain together with the limited data bandwidth available in real applications. Compressive Sensing reduces the images by randomly subsampling the spectral bands of each spatial pixel and then it performs the image reconstruction of all the bands using recovery algorithms which impose sparsity in a certain transform domain. Since the image pixels are not strictly sparse, this work studies a data sparsification pre-processing stage prior to compression to ensure the sparsity of the pixels. The sparsified images are compressed $2.5\times$ and then recovered using the Generalized Orthogonal Matching Pursuit algorithm (gOMP) characterized by high accuracy, low computational requirements and fast convergence. The experiments are performed in five conventional hyperspectral images where the effect of different sparsification levels in the quality of the uncompressed as well as the recovered images is studied. It is concluded that the gOMP algorithm reconstructs the hyperspectral images with higher accuracy as well as faster convergence when the pixels are highly sparsified and hence at the expense of reducing the quality of the recovered images with respect to the original images.

Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司