Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at //github.com/OpenNLPLab/Rpe.
We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in //github.com/radarFudan/Curse-of-memory
We present a generalization of first-order unification to a term algebra where variable indexing is part of the object language. We exploit variable indexing by associating some sequences of variables ($X_0,\ X_1,\ X_2,\dots$) with a mapping $\sigma$ whose domain is the variable sequence and whose range consist of terms that may contain variables from the sequence. From a given term $t$, an infinite sequence of terms may be produced by iterative application of $\sigma$. Given a unification problem $U$ and mapping $\sigma$, the \textit{schematic unification problem} asks whether all unification problems $U$, $\sigma(U)$, $\sigma(\sigma(U))$, $\dots$ are unifiable. We provide a terminating and sound algorithm. Our algorithm is \textit{complete} if we further restrict ourselves to so-called $\infty$-stable problems. We conjecture that this additional requirement is unnecessary for completeness. Schematic unification is related to methods of inductive proof transformation by resolution and inductive reasoning.
Set reconciliation, where two parties hold fixed-length bit strings and run a protocol to learn the strings they are missing from each other, is a fundamental task in many distributed systems. We present Rateless Invertible Bloom Lookup Tables (Rateless IBLT), the first set reconciliation protocol, to the best of our knowledge, that achieves low computation cost and near-optimal communication cost across a wide range of scenarios: set differences of one to millions, bit strings of a few bytes to megabytes, and workloads injected by potential adversaries. Rateless IBLT is based on a novel encoder that incrementally encodes the set difference into an infinite stream of coded symbols, resembling rateless error-correcting codes. We compare Rateless IBLT with state-of-the-art set reconciliation schemes and demonstrate significant improvements. Rateless IBLT achieves 3--4x lower communication cost than non-rateless schemes with similar computation cost, and 2--2000x lower computation cost than schemes with similar communication cost. We show the real-world benefits of Rateless IBLT by applying it to synchronize the state of the Ethereum blockchain, and demonstrate 5.6x lower end-to-end completion time and 4.4x lower communication cost compared to the system used in production.
Counterfactual reasoning is pivotal in human cognition and especially important for providing explanations and making decisions. While Judea Pearl's influential approach is theoretically elegant, its generation of a counterfactual scenario often requires interventions that are too detached from the real scenarios to be feasible. In response, we propose a framework of natural counterfactuals and a method for generating counterfactuals that are natural with respect to the actual world's data distribution. Our methodology refines counterfactual reasoning, allowing changes in causally preceding variables to minimize deviations from realistic scenarios. To generate natural counterfactuals, we introduce an innovative optimization framework that permits but controls the extent of backtracking with a naturalness criterion. Empirical experiments indicate the effectiveness of our method.
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current State-of-the-art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To overcome the lack of annotated training data, we distill semantic matches from pre-trained vision models: our method renders the pair of 3D shapes from multiple viewpoints; the resulting renders are then fed into an off-the-shelf image-matching method which leverages a pretrained visual model to produce feature points. This yields semantic correspondences, which can be projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent between different viewpoints. These correspondences are refined and distilled into an inter-surface map by a dedicated optimization scheme, which promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with high semantic complexity, where objects are non-isometrically related, as well as in situations where they are nearly isometric.
We consider a model of third-degree price discrimination, in which the seller has a valuation for the product which is unknown to the market designer, who aims to maximize the buyers' surplus by revealing information regarding the buyer's valuation to the seller. Our main result shows that the regret is bounded by $U^*(0)/e$, where $U^*(0)$ is the optimal buyer surplus in the case where the seller has zero valuation for the product. This bound is attained by randomly drawing a seller valuation and applying the segmentation of Bergemann et al. (2015) with respect to the drawn valuation. We show that the $U^*(0)/e$ bound is tight in the case of binary buyer valuation.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.