亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of learning classification trees that are robust to distribution shifts between training and testing/deployment data. This problem arises frequently in high stakes settings such as public health and social work where data is often collected using self-reported surveys which are highly sensitive to e.g., the framing of the questions, the time when and place where the survey is conducted, and the level of comfort the interviewee has in sharing information with the interviewer. We propose a method for learning optimal robust classification trees based on mixed-integer robust optimization technology. In particular, we demonstrate that the problem of learning an optimal robust tree can be cast as a single-stage mixed-integer robust optimization problem with a highly nonlinear and discontinuous objective. We reformulate this problem equivalently as a two-stage linear robust optimization problem for which we devise a tailored solution procedure based on constraint generation. We evaluate the performance of our approach on numerous publicly available datasets, and compare the performance to a regularized, non-robust optimal tree. We show an increase of up to 12.48% in worst-case accuracy and of up to 4.85% in average-case accuracy across several datasets and distribution shifts from using our robust solution in comparison to the non-robust one.

相關內容

Citation field learning is to segment a citation string into fields of interest such as author, title, and venue. Extracting such fields from citations is crucial for citation indexing, researcher profile analysis, etc. User-generated resources like academic homepages and Curriculum Vitae, provide rich citation field information. However, extracting fields from these resources is challenging due to inconsistent citation styles, incomplete sentence syntax, and insufficient training data. To address these challenges, we propose a novel algorithm, CIFAL (citation field learning by anchor learning), to boost the citation field learning performance. CIFAL leverages the anchor learning, which is model-agnostic for any Pre-trained Language Model, to help capture citation patterns from the data of different citation styles. The experiments demonstrate that CIFAL outperforms state-of-the-art methods in citation field learning, achieving a 2.68% improvement in field-level F1-scores. Extensive analysis of the results further confirms the effectiveness of CIFAL quantitatively and qualitatively.

We propose a novel framework DropTop that suppresses the shortcut bias in online continual learning (OCL) while being adaptive to the varying degree of the shortcut bias incurred by continuously changing environment. By the observed high-attention property of the shortcut bias, highly-activated features are considered candidates for debiasing. More importantly, resolving the limitation of the online environment where prior knowledge and auxiliary data are not ready, two novel techniques -- feature map fusion and adaptive intensity shifting -- enable us to automatically determine the appropriate level and proportion of the candidate shortcut features to be dropped. Extensive experiments on five benchmark datasets demonstrate that, when combined with various OCL algorithms, DropTop increases the average accuracy by up to 10.4% and decreases the forgetting by up to 63.2%.

Training a deep neural network to maximize a target objective has become the standard recipe for successful machine learning over the last decade. These networks can be optimized with supervised learning, if the target objective is differentiable. For many interesting problems, this is however not the case. Common objectives like intersection over union (IoU), bilingual evaluation understudy (BLEU) score or rewards cannot be optimized with supervised learning. A common workaround is to define differentiable surrogate losses, leading to suboptimal solutions with respect to the actual objective. Reinforcement learning (RL) has emerged as a promising alternative for optimizing deep neural networks to maximize non-differentiable objectives in recent years. Examples include aligning large language models via human feedback, code generation, object detection or control problems. This makes RL techniques relevant to the larger machine learning audience. The subject is, however, time intensive to approach due to the large range of methods, as well as the often very theoretical presentation. In this introduction, we take an alternative approach, different from classic reinforcement learning textbooks. Rather than focusing on tabular problems, we introduce reinforcement learning as a generalization of supervised learning, which we first apply to non-differentiable objectives and later to temporal problems. Assuming only basic knowledge of supervised learning, the reader will be able to understand state-of-the-art deep RL algorithms like proximal policy optimization (PPO) after reading this tutorial.

Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.

Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. In this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with $n$ vertices and $m$ edges admit a routing scheme that has competitive ratio $O(\log^2 n)$ and consists of a convex combination of only $O(\sqrt{m})$ electrical routings. This immediately leads to an improved construction algorithm with time $\tilde{O}(m^{3/2})$ that can also be implemented in parallel with $\tilde{O}(\sqrt{m})$ depth.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司