We propose a method for unsupervised opinion summarization that encodes sentences from customer reviews into a hierarchical discrete latent space, then identifies common opinions based on the frequency of their encodings. We are able to generate both abstractive summaries by decoding these frequent encodings, and extractive summaries by selecting the sentences assigned to the same frequent encodings. Our method is attributable, because the model identifies sentences used to generate the summary as part of the summarization process. It scales easily to many hundreds of input reviews, because aggregation is performed in the latent space rather than over long sequences of tokens. We also demonstrate that our appraoch enables a degree of control, generating aspect-specific summaries by restricting the model to parts of the encoding space that correspond to desired aspects (e.g., location or food). Automatic and human evaluation on two datasets from different domains demonstrates that our method generates summaries that are more informative than prior work and better grounded in the input reviews.
The widespread usage of latent language representations via pre-trained language models (LMs) suggests that they are a promising source of structured knowledge. However, existing methods focus only on a single object per subject-relation pair, even though often multiple objects are correct. To overcome this limitation, we analyze these representations for their potential to yield materialized multi-object relational knowledge. We formulate the problem as a rank-then-select task. For ranking candidate objects, we evaluate existing prompting techniques and propose new ones incorporating domain knowledge. Among the selection methods, we find that choosing objects with a likelihood above a learned relation-specific threshold gives a 49.5% F1 score. Our results highlight the difficulty of employing LMs for the multi-valued slot-filling task and pave the way for further research on extracting relational knowledge from latent language representations.
A growing body of work studies how to answer a question or verify a claim by generating a natural language "proof": a chain of deductive inferences yielding the answer based on a set of premises. However, these methods can only make sound deductions when they follow from evidence that is given. We propose a new system that can handle the underspecified setting where not all premises are stated at the outset; that is, additional assumptions need to be materialized to prove a claim. By using a natural language generation model to abductively infer a premise given another premise and a conclusion, we can impute missing pieces of evidence needed for the conclusion to be true. Our system searches over two fringes in a bidirectional fashion, interleaving deductive (forward-chaining) and abductive (backward-chaining) generation steps. We sample multiple possible outputs for each step to achieve coverage of the search space, at the same time ensuring correctness by filtering low-quality generations with a round-trip validation procedure. Results on a modified version of the EntailmentBank dataset and a new dataset called Everyday Norms: Why Not? show that abductive generation with validation can recover premises across in- and out-of-domain settings
Learning generic high-dimensional tasks is notably hard, as it requires a number of training data exponential in the dimension. Yet, deep convolutional neural networks (CNNs) have shown remarkable success in overcoming this challenge. A popular hypothesis is that learnable tasks are highly structured and that CNNs leverage this structure to build a low-dimensional representation of the data. However, little is known about how much training data they require, and how this number depends on the data structure. This paper answers this question for a simple classification task that seeks to capture relevant aspects of real data: the Random Hierarchy Model. In this model, each of the $n_c$ classes corresponds to $m$ synonymic compositions of high-level features, which are in turn composed of sub-features through an iterative process repeated $L$ times. We find that the number of training data $P^*$ required by deep CNNs to learn this task (i) grows asymptotically as $n_c m^L$, which is only polynomial in the input dimensionality; (ii) coincides with the training set size such that the representation of a trained network becomes invariant to exchanges of synonyms; (iii) corresponds to the number of data at which the correlations between low-level features and classes become detectable. Overall, our results indicate how deep CNNs can overcome the curse of dimensionality by building invariant representations, and provide an estimate of the number of data required to learn a task based on its hierarchically compositional structure.
Transformer-based Language Models (LMs) have achieved impressive results on natural language understanding tasks, but they can also generate toxic text such as insults, threats, and profanity, limiting their real-world applications. To overcome this issue, a few text generation approaches aim to detoxify toxic texts using additional LMs or perturbations. However, previous methods require excessive memory, computations, and time which are serious bottlenecks in their real-world application. To address such limitations, we propose an effective yet efficient method for language detoxification using an attribute-discriminative latent space. Specifically, we project the latent space of an original Transformer LM onto a discriminative latent space that well-separates texts by their attributes using a projection block and an attribute discriminator. This allows the LM to control the text generation to be non-toxic with minimal memory and computation overhead. We validate our model, Attribute-Discriminative Language Model (ADLM) on detoxified language and dialogue generation tasks, on which our method significantly outperforms baselines both in performance and efficiency.
The successful analysis of argumentative techniques from user-generated text is central to many downstream tasks such as political and market analysis. Recent argument mining tools use state-of-the-art deep learning methods to extract and annotate argumentative techniques from various online text corpora, however each task is treated as separate and different bespoke models are fine-tuned for each dataset. We show that different argument mining tasks share common semantic and logical structure by implementing a multi-task approach to argument mining that achieves better performance than state-of-the-art methods for the same problems. Our model builds a shared representation of the input text that is common to all tasks and exploits similarities between tasks in order to further boost performance via parameter-sharing. Our results are important for argument mining as they show that different tasks share substantial similarities and suggest a holistic approach to the extraction of argumentative techniques from text.
Large Language Models work quite well with general-purpose data and many tasks in Natural Language Processing. However, they show several limitations when used for a task such as domain-specific abstractive text summarization. This paper identifies three of those limitations as research problems in the context of abstractive text summarization: 1) Quadratic complexity of transformer-based models with respect to the input text length; 2) Model Hallucination, which is a model's ability to generate factually incorrect text; and 3) Domain Shift, which happens when the distribution of the model's training and test corpus is not the same. Along with a discussion of the open research questions, this paper also provides an assessment of existing state-of-the-art techniques relevant to domain-specific text summarization to address the research gaps.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.