亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.

相關內容

The reasoning capabilities of Large Language Models (LLMs) play a pivotal role in the realm of embodied artificial intelligence. Although there are effective methods like program-of-thought prompting for LLMs which uses programming language to tackle complex reasoning tasks, the specific impact of code data on the improvement of reasoning capabilities remains under-explored. To address this gap, we propose complexity-impacted reasoning score (CIRS), which combines structural and logical attributes, to measure the correlation between code and reasoning abilities. Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity by considering the difficulty and the cyclomatic complexity. Through an empirical analysis, we find not all code data of complexity can be learned or understood by LLMs. Optimal level of complexity is critical to the improvement of reasoning abilities by program-aided prompting. Then we design an auto-synthesizing and stratifying algorithm, and apply it to instruction generation for mathematical reasoning and code data filtering for code generation tasks. Extensive results demonstrates the effectiveness of our proposed approach. Code will be integrated into the EasyInstruct framework at //github.com/zjunlp/EasyInstruct.

The index of success of the researchers are now mostly measured using the Hirsch index ($h$). Our recent precise demonstration, that statistically $h \sim \sqrt {N_c} \sim \sqrt {N_p}$, where $N_p$ and $N_c$ denote respectively the total number of publications and total citations for the researcher, suggests that average number of citations per paper ($N_c/N_p$), and hence $h$, are statistical numbers (Dunbar numbers) depending on the community or network to which the researcher belongs. We show here, extending our earlier observations, that the indications of success are not reflected by the total citations $N_c$, rather by the inequalities among citations from publications to publications. Specifically, we show that for very successful authors, the yearly variations in the Gini index ($g$, giving the average inequality of citations for the publications) and the Kolkata index ($k$, giving the fraction of total citations received by the top $1 - k$ fraction of publications; $k = 0.80$ corresponds to Pareto's 80/20 law) approach each other to $g = k \simeq 0.82$, signaling a precursor for the arrival of (or departure from) the Self-Organized Critical (SOC) state of his/her publication statistics. Analyzing the citation statistics (from Google Scholar) of thirty successful scientists throughout their recorded publication history, we find that the $g$ and $k$ for very successful among them (mostly Nobel Laureates, highest rank Stanford Cite-Scorers, and a few others) reach and hover just above (and then) below that $g = k \simeq 0.82$ mark, while for others they remain below that mark. We also find that for all the lower (than the SOC mark 0.82) values of $k$ and $g$ fit a linear relationship $k = 1/2 + cg$, with $c = 0.39$.

Machine learning (ML) has become increasingly popular in network intrusion detection. However, ML-based solutions always respond regardless of whether the input data reflects known patterns, a common issue across safety-critical applications. While several proposals exist for detecting Out-Of-Distribution (OOD) in other fields, it remains unclear whether these approaches can effectively identify new forms of intrusions for network security. New attacks, not necessarily affecting overall distributions, are not guaranteed to be clearly OOD as instead, images depicting new classes are in computer vision. In this work, we investigate whether existing OOD detectors from other fields allow the identification of unknown malicious traffic. We also explore whether more discriminative and semantically richer embedding spaces within models, such as those created with contrastive learning and multi-class tasks, benefit detection. Our investigation covers a set of six OOD techniques that employ different detection strategies. These techniques are applied to models trained in various ways and subsequently exposed to unknown malicious traffic from the same and different datasets (network environments). Our findings suggest that existing detectors can identify a consistent portion of new malicious traffic, and that improved embedding spaces enhance detection. We also demonstrate that simple combinations of certain detectors can identify almost 100% of malicious traffic in our tested scenarios.

Although Transformer has achieved great success in natural language process and computer vision, it has difficulty generalizing to medium and large-scale graph data for two important reasons: (i) High complexity. (ii) Failing to capture the complex and entangled structure information. In graph representation learning, Graph Neural Networks(GNNs) can fuse the graph structure and node attributes but have limited receptive fields. Therefore, we question whether can we combine Transformers and GNNs to help each other. In this paper, we propose a new model named TransGNN where the Transformer layer and GNN layer are used alternately to improve each other. Specifically, to expand the receptive field and disentangle the information aggregation from edges, we propose using Transformer to aggregate more relevant nodes' information to improve the message passing of GNNs. Besides, to capture the graph structure information, we utilize positional encoding and make use of the GNN layer to fuse the structure into node attributes, which improves the Transformer in graph data. We also propose to sample the most relevant nodes for Transformer and two efficient samples update strategies to lower the complexity. At last, we theoretically prove that TransGNN is more expressive than GNNs only with extra linear complexity. The experiments on eight datasets corroborate the effectiveness of TransGNN on node and graph classification tasks.

The prevalent use of Large Language Models (LLMs) has necessitated studying their mental models, yielding noteworthy theoretical and practical implications. Current research has demonstrated that state-of-the-art LLMs, such as ChatGPT, exhibit certain theory of mind capabilities and possess relatively stable Big Five and/or MBTI personality traits. In addition, cognitive process features form an essential component of these mental models. Research in cultural psychology indicated significant differences in the cognitive processes of Eastern and Western people when processing information and making judgments. While Westerners predominantly exhibit analytical thinking that isolates things from their environment to analyze their nature independently, Easterners often showcase holistic thinking, emphasizing relationships and adopting a global viewpoint. In our research, we probed the cultural cognitive traits of ChatGPT. We employed two scales that directly measure the cognitive process: the Analysis-Holism Scale (AHS) and the Triadic Categorization Task (TCT). Additionally, we used two scales that investigate the value differences shaped by cultural thinking: the Dialectical Self Scale (DSS) and the Self-construal Scale (SCS). In cognitive process tests (AHS/TCT), ChatGPT consistently tends towards Eastern holistic thinking, but regarding value judgments (DSS/SCS), ChatGPT does not significantly lean towards the East or the West. We suggest that the result could be attributed to both the training paradigm and the training data in LLM development. We discuss the potential value of this finding for AI research and directions for future research.

App reviews reflect various user requirements that can aid in planning maintenance tasks. Recently, proposed approaches for automatically classifying user reviews rely on machine learning algorithms. Devine et al. demonstrated that models trained on existing labeled datasets exhibit poor performance when predicting new ones. Although integrating datasets improves the results to some extent, there is still a need for greater generalizability to be taken into consideration. Therefore, a comprehensive labeled dataset is essential to train a more precise model. This paper introduces an approach to train a more generalizable model by leveraging information from an additional source, such as the GitHub issue tracking system, that contains valuable information about user requirements. We propose an approach that assists in augmenting labeled datasets by utilizing information extracted from GitHub issues. First, we identify issues concerning review intentions (bug reports, feature requests, and others) by examining the issue labels. Then, we analyze issue bodies and define 19 language patterns for extracting targeted information. Finally, we augment the manually labeled review dataset with a subset of processed issues through the Within-App, Within-Context, and Between-App Analysis methods. The first two methods train the app-specific models, and the last suits the general-purpose models. We conducted several experiments to evaluate the proposed approach. Our results demonstrate that using labeled issues for data augmentation can improve the F1-score and recall to 13.9 and 29.9 in the bug reports, respectively, and to 7.5 and 13.5 for feature requests. Furthermore, we identify an effective volume range of 0.3 to 0.7, which provides better performance improvements.

The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at \url{//github.com/WangFei-2019/SNARE/}.

Contextual language models have been trained on Classical languages, including Ancient Greek and Latin, for tasks such as lemmatization, morphological tagging, part of speech tagging, authorship attribution, and detection of scribal errors. However, high-quality sentence embedding models for these historical languages are significantly more difficult to achieve due to the lack of training data. In this work, we use a multilingual knowledge distillation approach to train BERT models to produce sentence embeddings for Ancient Greek text. The state-of-the-art sentence embedding approaches for high-resource languages use massive datasets, but our distillation approach allows our Ancient Greek models to inherit the properties of these models while using a relatively small amount of translated sentence data. We build a parallel sentence dataset using a sentence-embedding alignment method to align Ancient Greek documents with English translations, and use this dataset to train our models. We evaluate our models on translation search, semantic similarity, and semantic retrieval tasks and investigate translation bias. We make our training and evaluation datasets freely available at //github.com/kevinkrahn/ancient-greek-datasets .

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.

北京阿比特科技有限公司