Recent literature proposes combining short-term experimental and long-term observational data to provide credible alternatives to conventional observational studies for identification of long-term average treatment effects (LTEs). I show that experimental data have an auxiliary role in this context. They bring no identifying power without additional modeling assumptions. When modeling assumptions are imposed, experimental data serve to amplify their identifying power. If the assumptions fail, adding experimental data may only yield results that are farther from the truth. Motivated by this, I introduce two assumptions on treatment response that may be defensible based on economic theory or intuition. To utilize them, I develop a novel two-step identification approach that centers on bounding temporal link functions -- the relationship between short-term and mean long-term potential outcomes. The approach provides sharp bounds on LTEs for a general class of assumptions, and allows for imperfect experimental compliance -- extending existing results.
We propose a highly flexible distributional copula regression model for bivariate time-to-event data in the presence of right-censoring. The joint survival function of the response is constructed using parametric copulas, allowing for a separate specification of the dependence structure between the time-to-event outcome variables and their respective marginal survival distributions. The latter are specified using well-known parametric distributions such as the log-Normal, log-Logistic (proportional odds model), or Weibull (proportional hazards model) distributions. Hence, the marginal univariate event times can be specified as parametric (also known as Accelerated Failure Time, AFT) models. Embedding our model into the class of generalized additive models for location, scale and shape, possibly all distribution parameters of the joint survival function can depend on covariates. We develop a component-wise gradient-based boosting algorithm for estimation. This way, our approach is able to conduct data-driven variable selection. To the best of our knowledge, this is the first implementation of multivariate AFT models via distributional copula regression with automatic variable selection via statistical boosting. A special merit of our approach is that it works for high-dimensional (p>>n) settings. We illustrate the practical potential of our method on a high-dimensional application related to semi-competing risks responses in ovarian cancer. All of our methods are implemented in the open source statistical software R as add-on functions of the package gamboostLSS.
The amount of image datasets collected for environmental monitoring purposes has increased in the past years as computer vision assisted methods have gained interest. Computer vision applications rely on high-quality datasets, making data curation important. However, data curation is often done ad-hoc and the methods used are rarely published. We present a method for curating large-scale image datasets of invertebrates that contain multiple images of the same taxa and/or specimens and have relatively uniform background in the images. Our approach is based on extracting feature embeddings with pretrained deep neural networks, and using these embeddings to find visually most distinct images by comparing their embeddings to the group prototype embedding. Also, we show that a simple area-based size comparison approach is able to find a lot of common erroneous images, such as images containing detached body parts and misclassified samples. In addition to the method, we propose using novel metrics for evaluating human-in-the-loop outlier detection methods. The implementations of the proposed curation methods, as well as a benchmark dataset containing annotated erroneous images, are publicly available in //github.com/mikkoim/taxonomist-studio.
This exploratory pilot study investigated the potential of combining a domain-specific model, BERN2, with large language models (LLMs) to enhance automated disease phenotyping from research survey data. Motivated by the need for efficient and accurate methods to harmonize the growing volume of survey data with standardized disease ontologies, we employed BERN2, a biomedical named entity recognition and normalization model, to extract disease information from the ORIGINS birth cohort survey data. After rigorously evaluating BERN2's performance against a manually curated ground truth dataset, we integrated various LLMs using prompt engineering, Retrieval-Augmented Generation (RAG), and Instructional Fine-Tuning (IFT) to refine the model's outputs. BERN2 demonstrated high performance in extracting and normalizing disease mentions, and the integration of LLMs, particularly with Few Shot Inference and RAG orchestration, further improved accuracy. This approach, especially when incorporating structured examples, logical reasoning prompts, and detailed context, offers a promising avenue for developing tools to enable efficient cohort profiling and data harmonization across large, heterogeneous research datasets.
A recently proposed scheme utilizing local noise addition and matrix masking enables data collection while protecting individual privacy from all parties, including the central data manager. Statistical analysis of such privacy-preserved data is particularly challenging for nonlinear models like logistic regression. By leveraging a relationship between logistic regression and linear regression estimators, we propose the first valid statistical analysis method for logistic regression under this setting. Theoretical analysis of the proposed estimators confirmed its validity under an asymptotic framework with increasing noise magnitude to account for strict privacy requirements. Simulations and real data analyses demonstrate the superiority of the proposed estimators over naive logistic regression methods on privacy-preserved data sets.
As artificial intelligence (AI) continues advancing, ensuring positive societal impacts becomes critical, especially as AI systems become increasingly ubiquitous in various aspects of life. However, developing "AI for good" poses substantial challenges around aligning systems with complex human values. Presently, we lack mature methods for addressing these challenges. This article presents and evaluates the Positive AI design method aimed at addressing this gap. The method provides a human-centered process to translate wellbeing aspirations into concrete practices. First, we explain the method's four key steps: contextualizing, operationalizing, optimizing, and implementing wellbeing supported by continuous measurement for feedback cycles. We then present a multiple case study where novice designers applied the method, revealing strengths and weaknesses related to efficacy and usability. Next, an expert evaluation study assessed the quality of the resulting concepts, rating them moderately high for feasibility, desirability, and plausibility of achieving intended wellbeing benefits. Together, these studies provide preliminary validation of the method's ability to improve AI design, while surfacing areas needing refinement like developing support for complex steps. Proposed adaptations such as examples and evaluation heuristics could address weaknesses. Further research should examine sustained application over multiple projects. This human-centered approach shows promise for realizing the vision of 'AI for Wellbeing' that does not just avoid harm, but actively benefits humanity.
This study investigates the internal representations of verb-particle combinations within transformer-based large language models (LLMs), specifically examining how these models capture lexical and syntactic nuances at different neural network layers. Employing the BERT architecture, we analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'. Our methodology includes a detailed dataset preparation from the British National Corpus, followed by extensive model training and output analysis through techniques like multi-dimensional scaling (MDS) and generalized discrimination value (GDV) calculations. Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories. These findings challenge the conventional uniformity assumed in neural network processing of linguistic elements and suggest a complex interplay between network architecture and linguistic representation. Our research contributes to a better understanding of how deep learning models comprehend and process language, offering insights into the potential and limitations of current neural approaches to linguistic analysis. This study not only advances our knowledge in computational linguistics but also prompts further research into optimizing neural architectures for enhanced linguistic precision.
Deep learning solutions are instrumental in cybersecurity, harnessing their ability to analyze vast datasets, identify complex patterns, and detect anomalies. However, malevolent actors can exploit these capabilities to orchestrate sophisticated attacks, posing significant challenges to defenders and traditional security measures. Adversarial attacks, particularly those targeting vulnerabilities in deep learning models, present a nuanced and substantial threat to cybersecurity. Our study delves into adversarial learning threats such as Data Poisoning, Test Time Evasion, and Reverse Engineering, specifically impacting Network Intrusion Detection Systems. Our research explores the intricacies and countermeasures of attacks to deepen understanding of network security challenges amidst adversarial threats. In our study, we present insights into the dynamic realm of adversarial learning and its implications for network intrusion. The intersection of adversarial attacks and defenses within network traffic data, coupled with advances in machine learning and deep learning techniques, represents a relatively underexplored domain. Our research lays the groundwork for strengthening defense mechanisms to address the potential breaches in network security and privacy posed by adversarial attacks. Through our in-depth analysis, we identify domain-specific research gaps, such as the scarcity of real-life attack data and the evaluation of AI-based solutions for network traffic. Our focus on these challenges aims to stimulate future research efforts toward the development of resilient network defense strategies.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.