亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Score-based generative modeling with probability flow ordinary differential equations (ODEs) has achieved remarkable success in a variety of applications. While various fast ODE-based samplers have been proposed in the literature and employed in practice, the theoretical understandings about convergence properties of the probability flow ODE are still quite limited. In this paper, we provide the first non-asymptotic convergence analysis for a general class of probability flow ODE samplers in 2-Wasserstein distance, assuming accurate score estimates. We then consider various examples and establish results on the iteration complexity of the corresponding ODE-based samplers.

相關內容

Mechanisms for generating differentially private synthetic data based on marginals and graphical models have been successful in a wide range of settings. However, one limitation of these methods is their inability to incorporate public data. Initializing a data generating model by pre-training on public data has shown to improve the quality of synthetic data, but this technique is not applicable when model structure is not determined a priori. We develop the mechanism jam-pgm, which expands the adaptive measurements framework to jointly select between measuring public data and private data. This technique allows for public data to be included in a graphical-model-based mechanism. We show that jam-pgm is able to outperform both publicly assisted and non publicly assisted synthetic data generation mechanisms even when the public data distribution is biased.

Robotic manipulation relies on analytical or learned models to simulate the system dynamics. These models are often inaccurate and based on offline information, so that the robot planner is unable to cope with mismatches between the expected and the actual behavior of the system (e.g., the presence of an unexpected obstacle). In these situations, the robot should use information gathered online to correct its planning strategy and adapt to the actual system response. We propose a sampling-based motion planning approach that uses an estimate of the model error and online observations to correct the planning strategy at each new replanning. Our approach adapts the cost function and the sampling bias of a kinodynamic motion planner when the outcome of the executed transitions is different from the expected one (e.g., when the robot unexpectedly collides with an obstacle) so that future trajectories will avoid unreliable motions. To infer the properties of a new transition, we introduce the notion of context-awareness, i.e., we store local environment information for each executed transition and avoid new transitions with context similar to previous unreliable ones. This is helpful for leveraging online information even if the simulated transitions are far (in the state-and-action space) from the executed ones. Simulation and experimental results show that the proposed approach increases the success rate in execution and reduces the number of replannings needed to reach the goal.

Gaussian processes (GPs) are commonly used for geospatial analysis, but they suffer from high computational complexity when dealing with massive data. For instance, the log-likelihood function required in estimating the statistical model parameters for geospatial data is a computationally intensive procedure that involves computing the inverse of a covariance matrix with size n X n, where n represents the number of geographical locations. As a result, in the literature, studies have shifted towards approximation methods to handle larger values of n effectively while maintaining high accuracy. These methods encompass a range of techniques, including low-rank and sparse approximations. Vecchia approximation is one of the most promising methods to speed up evaluating the log-likelihood function. This study presents a parallel implementation of the Vecchia approximation, utilizing batched matrix computations on contemporary GPUs. The proposed implementation relies on batched linear algebra routines to efficiently execute individual conditional distributions in the Vecchia algorithm. We rely on the KBLAS linear algebra library to perform batched linear algebra operations, reducing the time to solution compared to the state-of-the-art parallel implementation of the likelihood estimation operation in the ExaGeoStat software by up to 700X, 833X, 1380X on 32GB GV100, 80GB A100, and 80GB H100 GPUs, respectively. We also successfully manage larger problem sizes on a single NVIDIA GPU, accommodating up to 1M locations with 80GB A100 and H100 GPUs while maintaining the necessary application accuracy. We further assess the accuracy performance of the implemented algorithm, identifying the optimal settings for the Vecchia approximation algorithm to preserve accuracy on two real geospatial datasets: soil moisture data in the Mississippi Basin area and wind speed data in the Middle East.

Effective out-of-distribution (OOD) detection is crucial for reliable machine learning models, yet most current methods are limited in practical use due to requirements like access to training data or intervention in training. We present a novel method for detecting OOD data in Transformers based on transformation smoothness between intermediate layers of a network (BLOOD), which is applicable to pre-trained models without access to training data. BLOOD utilizes the tendency of between-layer representation transformations of in-distribution (ID) data to be smoother than the corresponding transformations of OOD data, a property that we also demonstrate empirically. We evaluate BLOOD on several text classification tasks with Transformer networks and demonstrate that it outperforms methods with comparable resource requirements. Our analysis also suggests that when learning simpler tasks, OOD data transformations maintain their original sharpness, whereas sharpness increases with more complex tasks.

Machine learning models are commonly tested in-distribution (same dataset); performance almost always drops in out-of-distribution settings. For HRI research, the goal is often to develop generalized models. This makes domain generalization - retaining performance in different settings - a critical issue. In this study, we present a concise analysis of domain generalization in failure detection models trained on human facial expressions. Using two distinct datasets of humans reacting to videos where error occurs, one from a controlled lab setting and another collected online, we trained deep learning models on each dataset. When testing these models on the alternate dataset, we observed a significant performance drop. We reflect on the causes for the observed model behavior and leave recommendations. This work emphasizes the need for HRI research focusing on improving model robustness and real-life applicability.

Understanding the dimension dependency of computational complexity in high-dimensional sampling problem is a fundamental problem, both from a practical and theoretical perspective. Compared with samplers with unbiased stationary distribution, e.g., Metropolis-adjusted Langevin algorithm (MALA), biased samplers, e.g., Underdamped Langevin Dynamics (ULD), perform better in low-accuracy cases just because a lower dimension dependency in their complexities. Along this line, Freund et al. (2022) suggest that the modified Langevin algorithm with prior diffusion is able to converge dimension independently for strongly log-concave target distributions. Nonetheless, it remains open whether such property establishes for more general cases. In this paper, we investigate the prior diffusion technique for the target distributions satisfying log-Sobolev inequality (LSI), which covers a much broader class of distributions compared to the strongly log-concave ones. In particular, we prove that the modified Langevin algorithm can also obtain the dimension-independent convergence of KL divergence with different step size schedules. The core of our proof technique is a novel construction of an interpolating SDE, which significantly helps to conduct a more accurate characterization of the discrete updates of the overdamped Langevin dynamics. Our theoretical analysis demonstrates the benefits of prior diffusion for a broader class of target distributions and provides new insights into developing faster sampling algorithms.

Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT, which is increasingly desired for contemporary molecular research. However, its accuracy is limited by the kinetic energy density functional, which is notoriously hard to approximate for non-periodic molecular systems. Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model. We build the essential non-locality into the model, which is made affordable by the concise density representation as expansion coefficients under an atomic basis. With techniques to address unconventional learning challenges therein, M-OFDFT achieves a comparable accuracy with Kohn-Sham DFT on a wide range of molecules untouched by OFDFT before. More attractively, M-OFDFT extrapolates well to molecules much larger than those seen in training, which unleashes the appealing scaling of OFDFT for studying large molecules including proteins, representing an advancement of the accuracy-efficiency trade-off frontier in quantum chemistry.

Traditional Deep Neural Network (DNN) quantization methods using integer, fixed-point, or floating-point data types struggle to capture diverse DNN parameter distributions at low precision, and often require large silicon overhead and intensive quantization-aware training. In this study, we introduce Logarithmic Posits (LP), an adaptive, hardware-friendly data type inspired by posits that dynamically adapts to DNN weight/activation distributions by parameterizing LP bit fields. We also develop a novel genetic-algorithm based framework, LP Quantization (LPQ), to find optimal layer-wise LP parameters while reducing representational divergence between quantized and full-precision models through a novel global-local contrastive objective. Additionally, we design a unified mixed-precision LP accelerator (LPA) architecture comprising of processing elements (PEs) incorporating LP in the computational datapath. Our algorithm-hardware co-design demonstrates on average <1% drop in top-1 accuracy across various CNN and ViT models. It also achieves ~ 2x improvements in performance per unit area and 2.2x gains in energy efficiency compared to state-of-the-art quantization accelerators using different data types.

In general, diffusion model-based MRI reconstruction methods incrementally remove artificially added noise while imposing data consistency to reconstruct the underlying images. However, real-world MRI acquisitions already contain inherent noise due to thermal fluctuations. This phenomenon is particularly notable when using ultra-fast, high-resolution imaging sequences for advanced research, or using low-field systems favored by low- and middle-income countries. These common scenarios can lead to sub-optimal performance or complete failure of existing diffusion model-based reconstruction techniques. Specifically, as the artificially added noise is gradually removed, the inherent MRI noise becomes increasingly pronounced, making the actual noise level inconsistent with the predefined denoising schedule and consequently inaccurate image reconstruction. To tackle this problem, we propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation. Extensive experiments are conducted on two public datasets and an in-house clinical dataset with field strength ranging from 0.3T to 3T, showing that our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels. The code will be released after review.

We revisit the problem of spurious modes that are sometimes encountered in partial differential equations discretizations. It is generally suspected that one of the causes for spurious modes is due to how boundary conditions are treated, and we use this as the starting point of our investigations. By regarding boundary conditions as algebraic constraints on a differential equation, we point out that any differential equation with homogeneous boundary conditions also admits a typically infinite number of hidden or implicit boundary conditions. In most discretization schemes, these additional implicit boundary conditions are violated, and we argue that this is what leads to the emergence of spurious modes. These observations motivate two definitions of the quality of computed eigenvalues based on violations of derivatives of boundary conditions on the one hand, and on the Grassmann distance between subspaces associated with computed eigenspaces on the other. Both of these tests are based on a standardized treatment of boundary conditions and do not require a priori knowledge of eigenvalue locations. The effectiveness of these tests is demonstrated on several examples known to have spurious modes. In addition, these quality tests show that in most problems, about half the computed spectrum of a differential operator is of low quality. The tests also specifically identify the low accuracy modes, which can then be projected out as a type of model reduction scheme.

北京阿比特科技有限公司