If $G$ is a graph, $A$ and $B$ its induced subgraphs, and $f\colon A\to B$ an isomorphism, we say that $f$ is a partial automorphism of $G$. In 1992, Hrushovski proved that graphs have the extension property for partial automorphisms (EPPA, also called the Hrushovski property), that is, for every finite graph $G$ there is a finite graph $H$, its EPPA-witness, such that $G$ is an induced subgraph of $H$ and every partial automorphism of $G$ extends to an automorphism of $H$. The EPPA number of a graph $G$, denoted by $\mathop{\mathrm{eppa}}\nolimits(G)$, is the smallest number of vertices of an EPPA-witness for $G$, and we put $\mathop{\mathrm{eppa}}\nolimits(n) = \max\{\mathop{\mathrm{eppa}}\nolimits(G) : \lvert G\rvert = n\}$. In this note we review the state of the area, prove several lower bounds (in particular, we show that $\mathop{\mathrm{eppa}}\nolimits(n)\geq \frac{2^n}{\sqrt{n}}$, thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and $K_k$-free graphs.
In this paper we study the Cayley graph $\mathrm{Cay}(S_n,T)$ of the symmetric group $S_n$ generated by a set of transpositions $T$. We show that for $n\geq 5$ the Cayley graph is normal. As a corollary, we show that its automorphism group is a direct product of $S_n$ and the automorphism group of the transposition graph associated to $T$. This provides an affirmative answer to a conjecture raised by Ganesan in arXiv:1703.08109, showing that $\mathrm{Cay}(S_n,T)$ is normal if and only if the transposition graph is not $C_4$ or $K_n$.
In this paper, we investigate the existence of self-dual MRD codes $C\subset L^n$, where $L/F$ is an arbitrary field extension of degree $m\geq n$. We then apply our results to the case of finite fields, and prove that if $m=n$ and $F=\mathbb{F}_q$, a self-dual MRD code exists if and only if $q\equiv n\equiv 3 \ [4].$
Let $G$ be an undirected graph. We say that $G$ contains a ladder of length $k$ if the $2 \times (k+1)$ grid graph is an induced subgraph of $G$ that is only connected to the rest of $G$ via its four cornerpoints. We prove that if all the ladders contained in $G$ are reduced to length 4, the treewidth remains unchanged (and that this bound is tight). Our result indicates that, when computing the treewidth of a graph, long ladders can simply be reduced, and that minimal forbidden minors for bounded treewidth graphs cannot contain long ladders. Our result also settles an open problem from algorithmic phylogenetics: the common chain reduction rule, used to simplify the comparison of two evolutionary trees, is treewidth-preserving in the display graph of the two trees.
A $k$-subcolouring of a graph $G$ is a function $f:V(G) \to \{0,\ldots,k-1\}$ such that the set of vertices coloured $i$ induce a disjoint union of cliques. The subchromatic number, $\chi_{\textrm{sub}}(G)$, is the minimum $k$ such that $G$ admits a $k$-subcolouring. Ne\v{s}et\v{r}il, Ossona de Mendez, Pilipczuk, and Zhu (2020), recently raised the problem of finding tight upper bounds for $\chi_{\textrm{sub}}(G^2)$ when $G$ is planar. We show that $\chi_{\textrm{sub}}(G^2)\le 43$ when $G$ is planar, improving their bound of 135. We give even better bounds when the planar graph $G$ has larger girth. Moreover, we show that $\chi_{\textrm{sub}}(G^{3})\le 95$, improving the previous bound of 364. For these we adapt some recent techniques of Almulhim and Kierstead (2022), while also extending the decompositions of triangulated planar graphs of Van den Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz (2017), to planar graphs of arbitrary girth. Note that these decompositions are the precursors of the graph product structure theorem of planar graphs. We give improved bounds for $\chi_{\textrm{sub}}(G^p)$ for all $p$, whenever $G$ has bounded treewidth, bounded simple treewidth, bounded genus, or excludes a clique or biclique as a minor. For this we introduce a family of parameters which form a gradation between the strong and the weak colouring numbers. We give upper bounds for these parameters for graphs coming from such classes. Finally, we give a 2-approximation algorithm for the subchromatic number of graphs coming from any fixed class with bounded layered cliquewidth. In particular, this implies a 2-approximation algorithm for the subchromatic number of powers $G^p$ of graphs coming from any fixed class with bounded layered treewidth (such as the class of planar graphs). This algorithm works even if the power $p$ and the graph $G$ is unknown.
In this paper we consider an initial-boundary value problem with a Caputo time derivative of order $\alpha\in(0,1)$. The solution typically exhibits a weak singularity near the initial time and this causes a reduction in the orders of convergence of standard schemes. To deal with this singularity, the solution is computed with a fitted difference scheme on a graded mesh. The convergence of this scheme is analysed using a discrete maximum principle and carefully chosen barrier functions. Sharp error estimates are proved, which show an enhancement in the convergence rate compared with the standard L1 approximation on uniform meshes, and also indicate an optimal choice for the mesh grading. This optimal mesh grading is less severe than the optimal grading for the standard L1 scheme. Furthermore, the dependence of the error on the final time forms part of our error estimate. Numerical experiments are presented which corroborate our theoretical results.
If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.
Let $(X_t)$ be a reflected diffusion process in a bounded convex domain in $\mathbb R^d$, solving the stochastic differential equation $$dX_t = \nabla f(X_t) dt + \sqrt{2f (X_t)} dW_t, ~t \ge 0,$$ with $W_t$ a $d$-dimensional Brownian motion. The data $X_0, X_D, \dots, X_{ND}$ consist of discrete measurements and the time interval $D$ between consecutive observations is fixed so that one cannot `zoom' into the observed path of the process. The goal is to infer the diffusivity $f$ and the associated transition operator $P_{t,f}$. We prove injectivity theorems and stability inequalities for the maps $f \mapsto P_{t,f} \mapsto P_{D,f}, t<D$. Using these estimates we establish the statistical consistency of a class of Bayesian algorithms based on Gaussian process priors for the infinite-dimensional parameter $f$, and show optimality of some of the convergence rates obtained. We discuss an underlying relationship between the degree of ill-posedness of this inverse problem and the `hot spots' conjecture from spectral geometry.
We consider the community detection problem in a sparse $q$-uniform hypergraph $G$, assuming that $G$ is generated according to the Hypergraph Stochastic Block Model (HSBM). We prove that a spectral method based on the non-backtracking operator for hypergraphs works with high probability down to the generalized Kesten-Stigum detection threshold conjectured by Angelini et al. (2015). We characterize the spectrum of the non-backtracking operator for the sparse HSBM and provide an efficient dimension reduction procedure using the Ihara-Bass formula for hypergraphs. As a result, community detection for the sparse HSBM on $n$ vertices can be reduced to an eigenvector problem of a $2n\times 2n$ non-normal matrix constructed from the adjacency matrix and the degree matrix of the hypergraph. To the best of our knowledge, this is the first provable and efficient spectral algorithm that achieves the conjectured threshold for HSBMs with $r$ blocks generated according to a general symmetric probability tensor.
In this work, a Generalized Finite Difference (GFD) scheme is presented for effectively computing the numerical solution of a parabolic-elliptic system modelling a bacterial strain with density-suppressed motility. The GFD method is a meshless method known for its simplicity for solving non-linear boundary value problems over irregular geometries. The paper first introduces the basic elements of the GFD method, and then an explicit-implicit scheme is derived. The convergence of the method is proven under a bound for the time step, and an algorithm is provided for its computational implementation. Finally, some examples are considered comparing the results obtained with a regular mesh and an irregular cloud of points.
Determining the capacity $\alpha_c$ of the Binary Perceptron is a long-standing problem. Krauth and Mezard (1989) conjectured an explicit value of $\alpha_c$, approximately equal to .833, and a rigorous lower bound matching this prediction was recently established by Ding and Sun (2019). Regarding the upper bound, Kim and Roche (1998) and Talagrand (1999) independently showed that $\alpha_c$ < .996, while Krauth and Mezard outlined an argument which can be used to show that $\alpha_c$ < .847. The purpose of this expository note is to record a complete proof of the bound $\alpha_c$ < .847. The proof is a conditional first moment method combined with known results on the spherical perceptron