Urban mobility is on the cusp of transformation with the emergence of shared, connected, and cooperative automated vehicles. Yet, for them to be accepted by customers, trust in their punctuality is vital. Many pilot initiatives operate without a fixed schedule, thus enhancing the importance of reliable arrival time (AT) predictions. This study presents an AT prediction system for autonomous shuttles, utilizing separate models for dwell and running time predictions, validated on real-world data from five cities. Alongside established methods such as XGBoost, we explore the benefits of integrating spatial data using graph neural networks (GNN). To accurately handle the case of a shuttle bypassing a stop, we propose a hierarchical model combining a random forest classifier and a GNN. The results for the final AT prediction are promising, showing low errors even when predicting several stops ahead. Yet, no single model emerges as universally superior, and we provide insights into the characteristics of pilot sites that influence the model selection process. Finally, we identify dwell time prediction as the key determinant in overall AT prediction accuracy when autonomous shuttles are deployed in low-traffic areas or under regulatory speed limits. This research provides insights into the current state of autonomous public transport prediction models and paves the way for more data-informed decision-making as the field advances.
Precise situational awareness is required for the safe decision-making of assisted and automated driving (AAD) functions. Panoptic segmentation is a promising perception technique to identify and categorise objects, impending hazards, and driveable space at a pixel level. While segmentation quality is generally associated with the quality of the camera data, a comprehensive understanding and modelling of this relationship are paramount for AAD system designers. Motivated by such a need, this work proposes a unifying pipeline to assess the robustness of panoptic segmentation models for AAD, correlating it with traditional image quality. The first step of the proposed pipeline involves generating degraded camera data that reflects real-world noise factors. To this end, 19 noise factors have been identified and implemented with 3 severity levels. Of these factors, this work proposes novel models for unfavourable light and snow. After applying the degradation models, three state-of-the-art CNN- and vision transformers (ViT)-based panoptic segmentation networks are used to analyse their robustness. The variations of the segmentation performance are then correlated to 8 selected image quality metrics. This research reveals that: 1) certain specific noise factors produce the highest impact on panoptic segmentation, i.e. droplets on lens and Gaussian noise; 2) the ViT-based panoptic segmentation backbones show better robustness to the considered noise factors; 3) some image quality metrics (i.e. LPIPS and CW-SSIM) correlate strongly with panoptic segmentation performance and therefore they can be used as predictive metrics for network performance.
Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy. However, existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having perceptual and subjective features in the training data seems essential for achieving the best results. We furthermore find that pointwise ranking strategies are competitive against pairwise approaches, in defiance of common wisdom.
Emergency communication is critical but challenging after natural disasters when ground infrastructure is devastated. Unmanned aerial vehicles (UAVs) offer enormous potential for agile relief coordination in these scenarios. However, effectively leveraging UAV fleets poses additional challenges around security, privacy, and efficient collaboration across response agencies. This paper presents a robust blockchain-enabled framework to address these challenges by integrating a consortium blockchain model, smart contracts, and cryptographic techniques to securely coordinate UAV fleets for disaster response. Specifically, we make two key contributions: a consortium blockchain architecture for secure and private multi-agency coordination; and an optimized consensus protocol balancing efficiency and fault tolerance using a delegated proof of stake practical byzantine fault tolerance (DPoS-PBFT). Comprehensive simulations showcase the framework's ability to enhance transparency, automation, scalability, and cyber-attack resilience for UAV coordination in post-disaster networks.
Learning from noisy data has attracted much attention, where most methods focus on closed-set label noise. However, a more common scenario in the real world is the presence of both open-set and closed-set noise. Existing methods typically identify and handle these two types of label noise separately by designing a specific strategy for each type. However, in many real-world scenarios, it would be challenging to identify open-set examples, especially when the dataset has been severely corrupted. Unlike the previous works, we explore how models behave when faced with open-set examples, and find that \emph{a part of open-set examples gradually get integrated into certain known classes}, which is beneficial for the separation among known classes. Motivated by the phenomenon, we propose a novel two-step contrastive learning method CECL (Class Expansion Contrastive Learning) which aims to deal with both types of label noise by exploiting the useful information of open-set examples. Specifically, we incorporate some open-set examples into closed-set classes to enhance performance while treating others as delimiters to improve representative ability. Extensive experiments on synthetic and real-world datasets with diverse label noise demonstrate the effectiveness of CECL.
Quantum computing is emerging as a significant threat to information protected by widely used cryptographic systems. Cryptographic methods, once deemed secure for decades, are now at risk of being compromised, posing a massive threat to the security of sensitive data and communications across enterprises worldwide. As a result, there is an urgent need to migrate to quantum-resistant cryptographic systems. This is no simple task. Migrating to a quantum-safe state is a complex process, and many organisations lack the in-house expertise to navigate this transition without guidance. In this paper, we present a comprehensive framework designed to assist enterprises with this migration. Our framework outlines essential steps involved in the cryptographic migration process, and leverages existing organisational inventories. The framework facilitates the efficient identification of cryptographic assets and can be integrated with other enterprise frameworks smoothly. To underscore its practicality and effectiveness, we have incorporated case studies that utilise graph-theoretic techniques to pinpoint and assess cryptographic dependencies. This is useful in prioritising crypto-systems for replacement.
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains a notable issue. Lowering the supply voltage is an effective strategy for reducing energy consumption. However, aggressively scaling down the supply voltage can lead to accuracy degradation due to random bit flips in static random access memory (SRAM) where model parameters are stored. To address this challenge, we introduce NeuralFuse, a novel add-on module that addresses the accuracy-energy tradeoff in low-voltage regimes by learning input transformations to generate error-resistant data representations. NeuralFuse protects DNN accuracy in both nominal and low-voltage scenarios. Moreover, NeuralFuse is easy to implement and can be readily applied to DNNs with limited access, such as non-configurable hardware or remote access to cloud-based APIs. Experimental results demonstrate that, at a 1% bit error rate, NeuralFuse can reduce SRAM memory access energy by up to 24% while recovering accuracy by up to 57%. To the best of our knowledge, this is the first model-agnostic approach (i.e., no model retraining) to address low-voltage-induced bit errors. The source code is available at //github.com/IBM/NeuralFuse.
We explore the cryptographic power of arbitrary shared physical resources. The most general such resource is access to a fresh entangled quantum state at the outset of each protocol execution. We call this the Common Reference Quantum State (CRQS) model, in analogy to the well-known Common Reference String (CRS). The CRQS model is a natural generalization of the CRS model but appears to be more powerful: in the two-party setting, a CRQS can sometimes exhibit properties associated with a Random Oracle queried once by measuring a maximally entangled state in one of many mutually unbiased bases. We formalize this notion as a Weak One-Time Random Oracle (WOTRO), where we only ask of the $m$-bit output to have some randomness when conditioned on the $n$-bit input. We show that when $n-m\in\omega(\lg n)$, any protocol for WOTRO in the CRQS model can be attacked by an (inefficient) adversary. Moreover, our adversary is efficiently simulatable, which rules out the possibility of proving the computational security of a scheme by a fully black-box reduction to a cryptographic game assumption. On the other hand, we introduce a non-game quantum assumption for hash functions that implies WOTRO in the CRQS model (where the CRQS consists only of EPR pairs). We first build a statistically secure WOTRO protocol where $m=n$, then hash the output. The impossibility of WOTRO has the following consequences. First, we show the fully-black-box impossibility of a quantum Fiat-Shamir transform, extending the impossibility result of Bitansky et al. (TCC 2013) to the CRQS model. Second, we show a fully-black-box impossibility result for a strenghtened version of quantum lightning (Zhandry, Eurocrypt 2019) where quantum bolts have an additional parameter that cannot be changed without generating new bolts. Our results also apply to $2$-message protocols in the plain model.
Air pollution kills 7 million people annually. Brick manufacturing industry is the second largest consumer of coal contributing to 8%-14% of air pollution in Indo-Gangetic plain (highly populated tract of land in the Indian subcontinent). As brick kilns are an unorganized sector and present in large numbers, detecting policy violations such as distance from habitat is non-trivial. Air quality and other domain experts rely on manual human annotation to maintain brick kiln inventory. Previous work used computer vision based machine learning methods to detect brick kilns from satellite imagery but they are limited to certain geographies and labeling the data is laborious. In this paper, we propose a framework to deploy a scalable brick kiln detection system for large countries such as India and identify 7477 new brick kilns from 28 districts in 5 states in the Indo-Gangetic plain. We then showcase efficient ways to check policy violations such as high spatial density of kilns and abnormal increase over time in a region. We show that 90% of brick kilns in Delhi-NCR violate a density-based policy. Our framework can be directly adopted by the governments across the world to automate the policy regulations around brick kilns.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.