Implicit generative modeling (IGM) aims to produce samples of synthetic data matching the characteristics of a target data distribution. Recent work (e.g. score-matching networks, diffusion models) has approached the IGM problem from the perspective of pushing synthetic source data toward the target distribution via dynamical perturbations or flows in the ambient space. We introduce the score difference (SD) between arbitrary target and source distributions as a flow that optimally reduces the Kullback-Leibler divergence between them while also solving the Schr\"odinger bridge problem. We apply the SD flow to convenient proxy distributions, which are aligned if and only if the original distributions are aligned. We demonstrate the formal equivalence of this formulation to denoising diffusion models under certain conditions. However, unlike diffusion models, SD flow places no restrictions on the prior distribution. We also show that the training of generative adversarial networks includes a hidden data-optimization sub-problem, which induces the SD flow under certain choices of loss function when the discriminator is optimal. As a result, the SD flow provides a theoretical link between model classes that, taken together, address all three challenges of the "generative modeling trilemma": high sample quality, mode coverage, and fast sampling.
The conventional understanding of adversarial training in generative adversarial networks (GANs) is that the discriminator is trained to estimate a divergence, and the generator learns to minimize this divergence. We argue that despite the fact that many variants of GANs were developed following this paradigm, the current theoretical understanding of GANs and their practical algorithms are inconsistent. In this paper, we leverage Wasserstein gradient flows which characterize the evolution of particles in the sample space, to gain theoretical insights and algorithmic inspiration of GANs. We introduce a unified generative modeling framework - MonoFlow: the particle evolution is rescaled via a monotonically increasing mapping of the log density ratio. Under our framework, adversarial training can be viewed as a procedure first obtaining MonoFlow's vector field via training the discriminator and the generator learns to draw the particle flow defined by the corresponding vector field. We also reveal the fundamental difference between variational divergence minimization and adversarial training. This analysis helps us to identify what types of generator loss functions can lead to the successful training of GANs and suggest that GANs may have more loss designs beyond the literature (e.g., non-saturated loss), as long as they realize MonoFlow. Consistent empirical studies are included to validate the effectiveness of our framework.
Simulation-based inference (SBI) methods such as approximate Bayesian computation (ABC), synthetic likelihood, and neural posterior estimation (NPE) rely on simulating statistics to infer parameters of intractable likelihood models. However, such methods are known to yield untrustworthy and misleading inference outcomes under model misspecification, thus hindering their widespread applicability. In this work, we propose the first general approach to handle model misspecification that works across different classes of SBI methods. Leveraging the fact that the choice of statistics determines the degree of misspecification in SBI, we introduce a regularized loss function that penalises those statistics that increase the mismatch between the data and the model. Taking NPE and ABC as use cases, we demonstrate the superior performance of our method on high-dimensional time-series models that are artificially misspecified. We also apply our method to real data from the field of radio propagation where the model is known to be misspecified. We show empirically that the method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.
Generative adversarial networks (GANs) have shown remarkable success in image synthesis, making GAN models themselves commercially valuable to legitimate model owners. Therefore, it is critical to technically protect the intellectual property of GANs. Prior works need to tamper with the training set or training process, and they are not robust to emerging model extraction attacks. In this paper, we propose a new ownership protection method based on the common characteristics of a target model and its stolen models. Our method can be directly applicable to all well-trained GANs as it does not require retraining target models. Extensive experimental results show that our new method can achieve the best protection performance, compared to the state-of-the-art methods. Finally, we demonstrate the effectiveness of our method with respect to the number of generations of model extraction attacks, the number of generated samples, different datasets, as well as adaptive attacks.
Personalized recommender systems fulfill the daily demands of customers and boost online businesses. The goal is to learn a policy that can generate a list of items that matches the user's demand or interest. While most existing methods learn a pointwise scoring model that predicts the ranking score of each individual item, recent research shows that the listwise approach can further improve the recommendation quality by modeling the intra-list correlations of items that are exposed together. This has motivated the recent list reranking and generative recommendation approaches that optimize the overall utility of the entire list. However, it is challenging to explore the combinatorial space of list actions and existing methods that use cross-entropy loss may suffer from low diversity issues. In this work, we aim to learn a policy that can generate sufficiently diverse item lists for users while maintaining high recommendation quality. The proposed solution, GFN4Rec, is a generative method that takes the insight of the flow network to ensure the alignment between list generation probability and its reward. The key advantages of our solution are the log scale reward matching loss that intrinsically improves the generation diversity and the autoregressive item selection model that captures the item mutual influences while capturing future reward of the list. As validation of our method's effectiveness and its superior diversity during active exploration, we conduct experiments on simulated online environments as well as an offline evaluation framework for two real-world datasets.
Bivariate count models having one marginal and the other conditionals being of the Poissons form are called pseudo-Poisson distributions. Such models have simple exible dependence structures, possess fast computation algorithms and generate a sufficiently large number of parametric families. It has been strongly argued that the pseudo-Poisson model will be the first choice to consider in modelling bivariate over-dispersed data with positive correlation and having one of the marginal equi-dispersed. Yet, before we start fitting, it is necessary to test whether the given data is compatible with the assumed pseudo-Poisson model. Hence, in the present note we derive and propose a few goodness-of-fit tests for the bivariate pseudo-Poisson distribution. Also we emphasize two tests, a lesser known test based on the supremes of the absolute difference between the estimated probability generating function and its empirical counterpart. A new test has been proposed based on the difference between the estimated bivariate Fisher dispersion index and its empirical indices. However, we also consider the potential of applying the bivariate tests that depend on the generating function (like the Kocherlakota and Kocherlakota and Mu~noz and Gamero tests) and the univariate goodness-of-fit tests (like the Chi-square test) to the pseudo-Poisson data. However, for each of the tests considered we analyse finite, large and asymptotic properties. Nevertheless, we compare the power (bivariate classical Poisson and Com-Max bivariate Poisson as alternatives) of each of the tests suggested and also include examples of application to real-life data. In a nutshell we are developing an R package which includes a test for compatibility of the data with the bivariate pseudo-Poisson model.
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.