亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper discusses recent research progress in robotic grasping and manipulation in the light of the latest Robotic Grasping and Manipulation Competitions (RGMCs). We first provide an overview of past benchmarks and competitions related to the robotics manipulation field. Then, we discuss the methodology behind designing the manipulation tasks in RGMCs. We provide a detailed analysis of key challenges for each task and identify the most difficult aspects based on the competing teams' performance in recent years. We believe that such an analysis is insightful to determine the future research directions for the robotic manipulation domain.

相關內容

機(ji)器(qi)(qi)(qi)人(英語:Robot)包(bao)括一切模擬人類行(xing)為或思(si)想與模擬其他生物的機(ji)械(如機(ji)器(qi)(qi)(qi)狗,機(ji)器(qi)(qi)(qi)貓(mao)等)。狹義上對機(ji)器(qi)(qi)(qi)人的定(ding)義還有很多分類法及爭議,有些電(dian)腦(nao)程序(xu)甚至(zhi)也被(bei)稱為機(ji)器(qi)(qi)(qi)人。在當代工業(ye)中,機(ji)器(qi)(qi)(qi)人指能自動運行(xing)任(ren)務的人造機(ji)器(qi)(qi)(qi)設備,用以取代或協助人類工作,一般會(hui)是(shi)機(ji)電(dian)設備,由計算機(ji)程序(xu)或是(shi)電(dian)子電(dian)路控制(zhi)。

知識薈萃

精品入門和進階(jie)教程、論文和代碼整理等

更多

查看(kan)相關VIP內容、論文、資訊等

The knowledge that an intelligent and autonomous mobile robot has and is able to acquire of itself and the environment, namely the situation, limits its reasoning, decision-making, and execution skills to efficiently and safely perform complex missions. Situational awareness is a basic capability of humans that has been deeply studied in fields like Psychology, Military, Aerospace, Education, etc., but it has barely been considered in robotics, which has focused on ideas such as sensing, perception, sensor fusion, state estimation, localization and mapping, spatial AI, etc. In our research, we connected the broad multidisciplinary existing knowledge on situational awareness with its counterpart in mobile robotics. In this paper, we survey the state-of-the-art robotics algorithms, we analyze the situational awareness aspects that have been covered by them, and we discuss their missing points. We found out that the existing robotics algorithms are still missing manifold important aspects of situational awareness. As a consequence, we conclude that these missing features are limiting the performance of robotic situational awareness, and further research is needed to overcome this challenge. We see this as an opportunity, and provide our vision for future research on robotic situational awareness.

This paper details our winning submission to Phase 1 of the 2021 Real Robot Challenge, a challenge in which a three fingered robot must carry a cube along specified goal trajectories. To solve Phase 1, we use a pure reinforcement learning approach which requires minimal expert knowledge of the robotic system or of robotic grasping in general. A sparse goal-based reward is employed in conjunction with Hindsight Experience Replay to teach the control policy to move the cube to the desired x and y coordinates. Simultaneously, a dense distance-based reward is employed to teach the policy to lift the cube to the desired z coordinate. The policy is trained in simulation with domain randomization before being transferred to the real robot for evaluation. Although performance tends to worsen after this transfer, our best trained policy can successfully lift the real cube along goal trajectories via the use of an effective pinching grasp. Our approach outperforms all other submissions, including those leveraging more traditional robotic control techniques, and is the first learning-based approach to solve this challenge.

Robotics is the next frontier in the progress of Artificial Intelligence (AI), as the real world in which robots operate represents an enormous, complex, continuous state space with inherent real-time requirements. One extreme challenge in robotics is currently formed by autonomous drone racing. Human drone racers can fly through complex tracks at speeds of up to 190 km/h. Achieving similar speeds with autonomous drones signifies tackling fundamental problems in AI under extreme restrictions in terms of resources. In this article, we present the winning solution of the first AI Robotic Racing (AIRR) Circuit, a competition consisting of four races in which all participating teams used the same drone, to which they had limited access. The core of our approach is inspired by how human pilots combine noisy observations of the race gates with their mental model of the drone's dynamics to achieve fast control. Our approach has a large focus on gate detection with an efficient deep neural segmentation network and active vision. Further, we make contributions to robust state estimation and risk-based control. This allowed us to reach speeds of ~9.2m/s in the last race, unrivaled by previous autonomous drone race competitions. Although our solution was the fastest and most robust, it still lost against one of the best human pilots, Gab707. The presented approach indicates a promising direction to close the gap with human drone pilots, forming an important step in bringing AI to the real world.

In this paper, we address the problem of estimating the hand pose from the egocentric view when the hand is interacting with objects. Specifically, we propose a method to label a dataset Ego-Siam which contains the egocentric images pair-wisely. We also use the collected pairwise data to train our encoder-decoder style network which has been proven efficient in. This could bring extra training efficiency and testing accuracy. Our network is lightweight and can be performed with over 30 FPS with an outdated GPU. We demonstrate that our method outperforms Mueller et al. which is the state of the art work dealing with egocentric hand-object interaction problems on the GANerated dataset. To show the ability to preserve the semantic information of our method, we also report the performance of grasp type classification on GUN-71 dataset and outperforms the benchmark by only using the predicted 3-d hand pose.

An agent that can understand natural-language instruction and carry out corresponding actions in the visual world is one of the long-term challenges of Artificial Intelligent (AI). Due to multifarious instructions from humans, it requires the agent can link natural language to vision and action in unstructured, previously unseen environments. If the instruction given by human is a navigation task, this challenge is called Visual-and-Language Navigation (VLN). It is a booming multi-disciplinary field of increasing importance and with extraordinary practicality. Instead of focusing on the details of specific methods, this paper provides a comprehensive survey on VLN tasks and makes a classification carefully according the different characteristics of language instructions in these tasks. According to when the instructions are given, the tasks can be divided into single-turn and multi-turn. For single-turn tasks, we further divided them into goal-orientation and route-orientation based on whether the instructions contain a route. For multi-turn tasks, we divided them into imperative task and interactive task based on whether the agent responses to the instructions. This taxonomy enable researchers to better grasp the key point of a specific task and identify directions for future research.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

This paper presents a comprehensive survey on vision-based robotic grasping. We concluded four key tasks during robotic grasping, which are object localization, pose estimation, grasp detection and motion planning. In detail, object localization includes object detection and segmentation methods, pose estimation includes RGB-based and RGB-D-based methods, grasp detection includes traditional methods and deep learning-based methods, motion planning includes analytical methods, imitating learning methods, and reinforcement learning methods. Besides, lots of methods accomplish some of the tasks jointly, such as object-detection-combined 6D pose estimation, grasp detection without pose estimation, end-to-end grasp detection, and end-to-end motion planning. These methods are reviewed elaborately in this survey. What's more, related datasets are summarized and comparisons between state-of-the-art methods are given for each task. Challenges about robotic grasping are presented, and future directions in addressing these challenges are also pointed out.

In the last few years, deep multi-agent reinforcement learning (RL) has become a highly active area of research. A particularly challenging class of problems in this area is partially observable, cooperative, multi-agent learning, in which teams of agents must learn to coordinate their behaviour while conditioning only on their private observations. This is an attractive research area since such problems are relevant to a large number of real-world systems and are also more amenable to evaluation than general-sum problems. Standardised environments such as the ALE and MuJoCo have allowed single-agent RL to move beyond toy domains, such as grid worlds. However, there is no comparable benchmark for cooperative multi-agent RL. As a result, most papers in this field use one-off toy problems, making it difficult to measure real progress. In this paper, we propose the StarCraft Multi-Agent Challenge (SMAC) as a benchmark problem to fill this gap. SMAC is based on the popular real-time strategy game StarCraft II and focuses on micromanagement challenges where each unit is controlled by an independent agent that must act based on local observations. We offer a diverse set of challenge maps and recommendations for best practices in benchmarking and evaluations. We also open-source a deep multi-agent RL learning framework including state-of-the-art algorithms. We believe that SMAC can provide a standard benchmark environment for years to come. Videos of our best agents for several SMAC scenarios are available at: //youtu.be/VZ7zmQ_obZ0.

This paper presents the first two editions of Visual Doom AI Competition, held in 2016 and 2017. The challenge was to create bots that compete in a multi-player deathmatch in a first-person shooter (FPS) game, Doom. The bots had to make their decisions based solely on visual information, i.e., a raw screen buffer. To play well, the bots needed to understand their surroundings, navigate, explore, and handle the opponents at the same time. These aspects, together with the competitive multi-agent aspect of the game, make the competition a unique platform for evaluating the state of the art reinforcement learning algorithms. The paper discusses the rules, solutions, results, and statistics that give insight into the agents' behaviors. Best-performing agents are described in more detail. The results of the competition lead to the conclusion that, although reinforcement learning can produce capable Doom bots, they still are not yet able to successfully compete against humans in this game. The paper also revisits the ViZDoom environment, which is a flexible, easy to use, and efficient 3D platform for research for vision-based reinforcement learning, based on a well-recognized first-person perspective game Doom.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

北京阿比特科技有限公司