The online advertising market has recently reached the 500 billion dollar mark, and to accommodate the need to match a user with the highest bidder at a fraction of a second, it has moved towards a complex automated model involving numerous agents and middle men. Stimulated by potential revenue and the lack of transparency, bad actors have found ways to abuse it, circumvent restrictions, and generate substantial revenue from objectionable and even illegal content. To make matters worse, they often receive advertisements from respectable companies which have nothing to do with these illegal activities. Altogether, advertiser money is funneled towards unknown entities, supporting their objectionable operations and maintaining their existence. In this project, we work towards understanding the extent of the problem and shed light on how shady agents take advantage of gaps in the ad ecosystem to monetize their operations. We study over 7 million websites and examine how state-of-the-art standards associated with online advertising are applied. We discover and present actual practices observed in the wild and show that publishers are able to monetize objectionable and illegal content and generate thousands of dollars of revenue on a monthly basis.
Purpose: The recent proliferation of preprints could be a way for researchers worldwide to increase the availability and visibility of their research findings. Against the background of rising publication costs caused by the increasing prevalence of article processing fees, the search for other ways to publish research results besides traditional journal publication may increase. This could be especially true for lower-income countries. Design/methodology/approach: Therefore, we are interested in the experiences and attitudes towards posting and using preprints in the Global South as opposed to the Global North. To explore whether motivations and concerns about posting preprints differ, we adopted a mixed-methods approach, combining a quantitative survey of researchers with focus group interviews. Findings: We found that respondents from the Global South were more likely to agree to adhere to policies and to emphasise that mandates could change publishing behaviour towards open access. They were also more likely to agree posting preprints has a positive impact. Respondents from the Global South and the Global North emphasised the importance of peer-reviewed research for career advancement. Originality: The study has identified a wide range of experiences with and attitudes towards posting preprints among researchers in the Global South and the Global North. To our knowledge, this has hardly been studied before, which is also because preprints only have emerged lately in many disciplines and countries.
Every day, thousands of digital documents are generated with useful information for companies, public organizations, and citizens. Given the impossibility of processing them manually, the automatic processing of these documents is becoming increasingly necessary in certain sectors. However, this task remains challenging, since in most cases a text-only based parsing is not enough to fully understand the information presented through different components of varying significance. In this regard, Document Layout Analysis (DLA) has been an interesting research field for many years, which aims to detect and classify the basic components of a document. In this work, we used a procedure to semi-automatically annotate digital documents with different layout labels, including 4 basic layout blocks and 4 text categories. We apply this procedure to collect a novel database for DLA in the public affairs domain, using a set of 24 data sources from the Spanish Administration. The database comprises 37.9K documents with more than 441K document pages, and more than 8M labels associated to 8 layout block units. The results of our experiments validate the proposed text labeling procedure with accuracy up to 99%.
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.
People use mobile devices ubiquitously for computing, communication, storage, web browsing, and more. As a result, the information accessed and stored within mobile devices, such as financial and health information, text messages, and emails, can often be sensitive. Despite this, people frequently use their mobile devices in public areas, becoming susceptible to a simple yet effective attack, shoulder surfing. Shoulder surfing occurs when a person near a mobile user peeks at the user's mobile device, potentially acquiring passcodes, PINs, browsing behavior, or other personal information. We propose Eye-Shield, a solution to prevent shoulder surfers from accessing or stealing sensitive on-screen information. Eye-Shield is designed to protect all types of on-screen information in real time, without any serious impediment to users' interactions with their mobile devices. Eye-Shield generates images that appear readable at close distances, but appear blurry or pixelated at farther distances and wider angles. It is capable of protecting on-screen information from shoulder surfers, operating in real time, and being minimally intrusive to the intended users. Eye-Shield protects images and text from shoulder surfers by reducing recognition rates to 24.24% and 15.91%. Our implementations of Eye-Shield, with frame rates of 24 FPS for Android and 43 FPS for iOS, effectively work on screen resolutions as high as 1440x3088. Eye-Shield also incurs acceptable memory usage, CPU utilization, and energy overhead. Finally, our MTurk and in-person user studies indicate that Eye-Shield protects on-screen information without a large usability cost for privacy-conscious users.
We study a variant of online convex optimization where the player is permitted to switch decisions at most $S$ times in expectation throughout $T$ rounds. Similar problems have been addressed in prior work for the discrete decision set setting, and more recently in the continuous setting but only with an adaptive adversary. In this work, we aim to fill the gap and present computationally efficient algorithms in the more prevalent oblivious setting, establishing a regret bound of $O(T/S)$ for general convex losses and $\widetilde O(T/S^2)$ for strongly convex losses. In addition, for stochastic i.i.d.~losses, we present a simple algorithm that performs $\log T$ switches with only a multiplicative $\log T$ factor overhead in its regret in both the general and strongly convex settings. Finally, we complement our algorithms with lower bounds that match our upper bounds in some of the cases we consider.
Metaverse provides users with a novel experience through immersive multimedia technologies. Along with the rapid user growth, numerous events bursting in the metaverse necessitate an announcer to help catch and monitor ongoing events. However, systems on the market primarily serve for esports competitions and rely on human directors, making it challenging to provide 24-hour delivery in the metaverse persistent world. To fill the blank, we proposed a three-stage architecture for metaverse announcers, which is designed to identify events, position cameras, and blend between shots. Based on the architecture, we introduced a Metaverse Announcer User Experience (MAUE) model to identify the factors affecting the users' Quality of Experience (QoE) from a human-centered perspective. In addition, we implemented \textit{MetaCast}, a practical self-driven metaverse announcer in a university campus metaverse prototype, to conduct user studies for MAUE model. The experimental results have effectively achieved satisfactory announcer settings that align with the preferences of most users, encompassing parameters such as video transition rate, repetition rate, importance threshold value, and image composition.
For the past 20 years, China has increasingly restricted the access of minors to online games using addiction prevention systems (APSes). At the same time, and through different means, i.e., the Great Firewall of China (GFW), it also restricts general population access to the international Internet. This paper studies how these restrictions impact young online gamers, and their evasion efforts. We present results from surveys (n = 2,415) and semi-structured interviews (n = 35) revealing viable commonly deployed APS evasion techniques and APS vulnerabilities. We conclude that the APS does not work as designed, even against very young online game players, and can act as a censorship evasion training ground for tomorrow's adults, by familiarization with and normalization of general evasion techniques, and desensitization to their dangers. Findings from these studies may further inform developers of censorship-resistant systems about the perceptions and evasion strategies of their prospective users, and help design tools that leverage services and platforms popular among the censored audience.
In recent years, more and more researchers have reflected on the undervaluation of emotion in data visualization and highlighted the importance of considering human emotion in visualization design. Meanwhile, an increasing number of studies have been conducted to explore emotion-related factors. However, so far, this research area is still in its early stages and faces a set of challenges, such as the unclear definition of key concepts, the insufficient justification of why emotion is important in visualization design, and the lack of characterization of the design space of affective visualization design. To address these challenges, first, we conducted a literature review and identified three research lines that examined both emotion and data visualization. We clarified the differences between these research lines and kept 109 papers that studied or discussed how data visualization communicates and influences emotion. Then, we coded the 109 papers in terms of how they justified the legitimacy of considering emotion in visualization design (i.e., why emotion is important) and identified five argumentative perspectives. Based on these papers, we also identified 61 projects that practiced affective visualization design. We coded these design projects in three dimensions, including design fields (where), design tasks (what), and design methods (how), to explore the design space of affective visualization design.
Machine Learning (ML) has shown significant potential in various applications; however, its adoption in privacy-critical domains has been limited due to concerns about data privacy. A promising solution to this issue is Federated Machine Learning (FedML), a model-to-data approach that prioritizes data privacy. By enabling ML algorithms to be applied directly to distributed data sources without sharing raw data, FedML offers enhanced privacy protections, making it suitable for privacy-critical environments. Despite its theoretical benefits, FedML has not seen widespread practical implementation. This study aims to explore the current state of applied FedML and identify the challenges hindering its practical adoption. Through a comprehensive systematic literature review, we assess 74 relevant papers to analyze the real-world applicability of FedML. Our analysis focuses on the characteristics and emerging trends of FedML implementations, as well as the motivational drivers and application domains. We also discuss the encountered challenges in integrating FedML into real-life settings. By shedding light on the existing landscape and potential obstacles, this research contributes to the further development and implementation of FedML in privacy-critical scenarios.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.