As research and practice in artificial intelligence (A.I.) grow in leaps and bounds, the resources necessary to sustain and support their operations also grow at an increasing pace. While innovations and applications from A.I. have brought significant advances, from applications to vision and natural language to improvements to fields like medical imaging and materials engineering, their costs should not be neglected. As we embrace a world with ever-increasing amounts of data as well as research and development of A.I. applications, we are sure to face an ever-mounting energy footprint to sustain these computational budgets, data storage needs, and more. But, is this sustainable and, more importantly, what kind of setting is best positioned to nurture such sustainable A.I. in both research and practice? In this paper, we outline our outlook for Green A.I. -- a more sustainable, energy-efficient and energy-aware ecosystem for developing A.I. across the research, computing, and practitioner communities alike -- and the steps required to arrive there. We present a bird's eye view of various areas for potential changes and improvements from the ground floor of AI's operational and hardware optimizations for datacenters/HPCs to the current incentive structures in the world of A.I. research and practice, and more. We hope these points will spur further discussion, and action, on some of these issues and their potential solutions.
With the fast improvement of machine learning, reinforcement learning (RL) has been used to automate human tasks in different areas. However, training such agents is difficult and restricted to expert users. Moreover, it is mostly limited to simulation environments due to the high cost and safety concerns of interactions in the real world. Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations. It is a relatively recent area in machine learning, but it is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations. Learning from demonstration accelerates the learning process by improving sample efficiency, while also reducing the effort of the programmer. Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare. This paper provides a survey of demonstration learning, where we formally introduce the demonstration problem along with its main challenges and provide a comprehensive overview of the process of learning from demonstrations from the creation of the demonstration data set, to learning methods from demonstrations, and optimization by combining demonstration learning with different machine learning methods. We also review the existing benchmarks and identify their strengths and limitations. Additionally, we discuss the advantages and disadvantages of the paradigm as well as its main applications. Lastly, we discuss our perspective on open problems and research directions for this rapidly growing field.
In the era of the Web of Things, the Metaverse is expected to be the landing site for the next generation of the Internet, resulting in the increased popularity of related technologies and applications in recent years and gradually becoming the focus of Internet research. The Metaverse, as a link between the real and virtual worlds, can provide users with immersive experiences. As the concept of the Metaverse grows in popularity, many scholars and developers begin to focus on the Metaverse's ethics and core. This paper argues that the Metaverse should be centered on humans. That is, humans constitute the majority of the Metaverse. As a result, we begin this paper by introducing the Metaverse's origins, characteristics, related technologies, and the concept of the human-centric Metaverse (HCM). Second, we discuss the manifestation of human-centric in the Metaverse. Finally, we discuss some current issues in the construction of HCM. In this paper, we provide a detailed review of the applications of human-centric technologies in the Metaverse, as well as the relevant HCM application scenarios. We hope that this paper can provide researchers and developers with some directions and ideas for human-centric Metaverse construction.
Neural Radiance Fields (NeRF) coupled with GANs represent a promising direction in the area of 3D reconstruction from a single view, owing to their ability to efficiently model arbitrary topologies. Recent work in this area, however, has mostly focused on synthetic datasets where exact ground-truth poses are known, and has overlooked pose estimation, which is important for certain downstream applications such as augmented reality (AR) and robotics. We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available. Our approach recovers an SDF-parameterized 3D shape, pose, and appearance from a single image of an object, without exploiting multiple views during training. More specifically, we leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution which is then refined via optimization. Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios. We demonstrate state-of-the-art results on a variety of real and synthetic benchmarks.
Visual information is central to conversation: body gestures and facial expressions, for example, contribute to meaning that transcends words alone. To date, however, most neural conversational models are limited to just text. We introduce CHAMPAGNE, a generative model of conversations that can account for visual contexts. To train CHAMPAGNE, we collect and release YTD-18M, a large-scale corpus of 18M video-based dialogues. YTD-18M is constructed from web videos: crucial to our data collection pipeline is a pretrained language model that converts error-prone automatic transcripts to a cleaner dialogue format while maintaining meaning. Human evaluation reveals that YTD-18M is more sensible and specific than prior resources (MMDialog, 1M dialogues), while maintaining visual-groundedness. Experiments demonstrate that 1) CHAMPAGNE learns to conduct conversation from YTD-18M; and 2) when fine-tuned, it achieves state-of-the-art results on four vision-language tasks focused on real-world conversations. We release data, models, and code at //seungjuhan.me/champagne.
We introduce an on-ground Pedestrian World Model, a computational model that can predict how pedestrians move around an observer in the crowd on the ground plane, but from just the egocentric-views of the observer. Our model, InCrowdFormer, fully leverages the Transformer architecture by modeling pedestrian interaction and egocentric to top-down view transformation with attention, and autoregressively predicts on-ground positions of a variable number of people with an encoder-decoder architecture. We encode the uncertainties arising from unknown pedestrian heights with latent codes to predict the posterior distributions of pedestrian positions. We validate the effectiveness of InCrowdFormer on a novel prediction benchmark of real movements. The results show that InCrowdFormer accurately predicts the future coordination of pedestrians. To the best of our knowledge, InCrowdFormer is the first-of-its-kind pedestrian world model which we believe will benefit a wide range of egocentric-view applications including crowd navigation, tracking, and synthesis.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.